Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Digital Twin-Based Distributed Manufacturing Execution System for Industry 4.0 with AI-Powered On-The-Fly Replanning Capabilities

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00372442" target="_blank" >RIV/68407700:21730/23:00372442 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/su15076251" target="_blank" >https://doi.org/10.3390/su15076251</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/su15076251" target="_blank" >10.3390/su15076251</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Digital Twin-Based Distributed Manufacturing Execution System for Industry 4.0 with AI-Powered On-The-Fly Replanning Capabilities

  • Popis výsledku v původním jazyce

    Industry 4.0 smart production systems comprise industrial systems and subsystems that need to be integrated in such a way that they are able to support high modularity and reconfigurability of all system components. In today’s industrial production, manufacturing execution systems (MESs) and supervisory control and data acquisition (SCADA) systems are typically in charge of orchestrating and monitoring automated production processes. This article explicates an MES architecture that is capable of autonomously composing, verifying, interpreting, and executing production plans using digital twins and symbolic planning methods. To support more efficient production, the proposed solution assumes that the manufacturing process can be started with an initial production plan that may be relatively inefficient but quickly found by an AI. While executing this initial plan, the AI searches for more efficient alternatives and forwards better solutions to the proposed MES, which is able to seamlessly switch between the currently executed plan and the new plan, even during production. Further, this on-the-fly replanning capability is also applicable when newly identified production circumstances/objectives appear, such as a malfunctioning robot, material shortage, or a last-minute change to a customizable product. Another feature of the proposed MES solution is its distributed operation with multiple instances. Each instance can interpret its part of the production plan, dedicated to a location within the entire production site. All of these MES instances are continuously synchronized, and the actual global or partial (i.e., from the instance perspective) progress of the production is handled in real-time within one common digital twin. This article presents three main contributions: (i) an execution system that is capable of switching seamlessly between an original and a subsequently introduced alternative production plan, (ii) on-the-fly AI-powered planning and replanning of industrial production integrated into a digital twin, and (iii) a distributed MES, which allows for running multiple instances that may depend on topology or specific conditions of a real production plant. All of these outcomes are demonstrated and validated on a use-case utilizing an Industry 4.0 testbed, which is equipped with an automated transport system and several industrial robots. While our solution is tested on a lab-sized production system, the technological base is prepared to be scaled up to larger systems.

  • Název v anglickém jazyce

    A Digital Twin-Based Distributed Manufacturing Execution System for Industry 4.0 with AI-Powered On-The-Fly Replanning Capabilities

  • Popis výsledku anglicky

    Industry 4.0 smart production systems comprise industrial systems and subsystems that need to be integrated in such a way that they are able to support high modularity and reconfigurability of all system components. In today’s industrial production, manufacturing execution systems (MESs) and supervisory control and data acquisition (SCADA) systems are typically in charge of orchestrating and monitoring automated production processes. This article explicates an MES architecture that is capable of autonomously composing, verifying, interpreting, and executing production plans using digital twins and symbolic planning methods. To support more efficient production, the proposed solution assumes that the manufacturing process can be started with an initial production plan that may be relatively inefficient but quickly found by an AI. While executing this initial plan, the AI searches for more efficient alternatives and forwards better solutions to the proposed MES, which is able to seamlessly switch between the currently executed plan and the new plan, even during production. Further, this on-the-fly replanning capability is also applicable when newly identified production circumstances/objectives appear, such as a malfunctioning robot, material shortage, or a last-minute change to a customizable product. Another feature of the proposed MES solution is its distributed operation with multiple instances. Each instance can interpret its part of the production plan, dedicated to a location within the entire production site. All of these MES instances are continuously synchronized, and the actual global or partial (i.e., from the instance perspective) progress of the production is handled in real-time within one common digital twin. This article presents three main contributions: (i) an execution system that is capable of switching seamlessly between an original and a subsequently introduced alternative production plan, (ii) on-the-fly AI-powered planning and replanning of industrial production integrated into a digital twin, and (iii) a distributed MES, which allows for running multiple instances that may depend on topology or specific conditions of a real production plant. All of these outcomes are demonstrated and validated on a use-case utilizing an Industry 4.0 testbed, which is equipped with an automated transport system and several industrial robots. While our solution is tested on a lab-sized production system, the technological base is prepared to be scaled up to larger systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_026%2F0008432" target="_blank" >EF16_026/0008432: Klastr 4.0 - Metodologie systémové integrace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sustainability — Open Access Journal

  • ISSN

    2071-1050

  • e-ISSN

    2071-1050

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    27

  • Strana od-do

  • Kód UT WoS článku

    000969070000001

  • EID výsledku v databázi Scopus

    2-s2.0-85152785660