Gaussian Latent Representations for Uncertainty Estimation using Mahalanobis Distance in Deep Classifiers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00374356" target="_blank" >RIV/68407700:21730/23:00374356 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICCVW60793.2023.00483" target="_blank" >https://doi.org/10.1109/ICCVW60793.2023.00483</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCVW60793.2023.00483" target="_blank" >10.1109/ICCVW60793.2023.00483</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gaussian Latent Representations for Uncertainty Estimation using Mahalanobis Distance in Deep Classifiers
Popis výsledku v původním jazyce
Recent works show that the data distribution in a network's latent space is useful for estimating classification uncertainty and detecting Out-Of-Distribution (OOD) samples. To obtain a well-regularized latent space that is conducive for uncertainty estimation, existing methods bring in significant changes to model architectures and training procedures. In this paper, we present a lightweight and high-performance regularization method for Mahalanobis distance (MD)-based uncertainty prediction, and that requires minimal changes to the network's architecture. To derive Gaussian latent representation favourable for MD calculation, we introduce a self-supervised representation learning method that separates in-class representations into multiple Gaussians. Classes with non-Gaussian representations are automatically identified and dynamically clustered into multiple new classes that are approximately Gaussian. Evaluation on standard OOD benchmarks shows that our method achieves state-of-the-art results on OOD detection and is very competitive on predictive probability calibration. Finally, we show the applicability of our method to a real-life computer vision use case on microorganism classification.
Název v anglickém jazyce
Gaussian Latent Representations for Uncertainty Estimation using Mahalanobis Distance in Deep Classifiers
Popis výsledku anglicky
Recent works show that the data distribution in a network's latent space is useful for estimating classification uncertainty and detecting Out-Of-Distribution (OOD) samples. To obtain a well-regularized latent space that is conducive for uncertainty estimation, existing methods bring in significant changes to model architectures and training procedures. In this paper, we present a lightweight and high-performance regularization method for Mahalanobis distance (MD)-based uncertainty prediction, and that requires minimal changes to the network's architecture. To derive Gaussian latent representation favourable for MD calculation, we introduce a self-supervised representation learning method that separates in-class representations into multiple Gaussians. Classes with non-Gaussian representations are automatically identified and dynamically clustered into multiple new classes that are approximately Gaussian. Evaluation on standard OOD benchmarks shows that our method achieves state-of-the-art results on OOD detection and is very competitive on predictive probability calibration. Finally, we show the applicability of our method to a real-life computer vision use case on microorganism classification.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICCVW2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
ISBN
979-8-3503-0744-3
ISSN
2473-9936
e-ISSN
2473-9944
Počet stran výsledku
10
Strana od-do
4490-4499
Název nakladatele
IEEE
Místo vydání
Anchorage, Alaska
Místo konání akce
Paris
Datum konání akce
2. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001156680304062