Robotic Grasping of Harvested Tomato Trusses Using Vision and Online Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00375256" target="_blank" >RIV/68407700:21730/24:00375256 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICRA57147.2024.10610089" target="_blank" >https://doi.org/10.1109/ICRA57147.2024.10610089</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICRA57147.2024.10610089" target="_blank" >10.1109/ICRA57147.2024.10610089</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robotic Grasping of Harvested Tomato Trusses Using Vision and Online Learning
Popis výsledku v původním jazyce
Currently, truss tomato weighing and packaging require significant manual work. The main obstacle to automation lies in the difficulty of developing a reliable robotic grasping system for already harvested trusses. We propose a method to grasp trusses that are stacked in a crate with considerable clutter, which is how they are commonly stored and transported after harvest. The method consists of a deep learning-based vision system to first identify the individual trusses in the crate and then determine a suitable grasping location on the stem. To this end, we have introduced a grasp pose ranking algorithm with online learning capabilities. After selecting the most promising grasp pose, the robot executes a pinch grasp without needing touch sensors or geometric models. Lab experiments with a robotic manipulator equipped with an eye-in-hand RGB-D camera showed a 100% clearance rate when tasked to pick all trusses from a pile. 93% of the trusses were successfully grasped on the first try, while the remaining 7% required more attempts.
Název v anglickém jazyce
Robotic Grasping of Harvested Tomato Trusses Using Vision and Online Learning
Popis výsledku anglicky
Currently, truss tomato weighing and packaging require significant manual work. The main obstacle to automation lies in the difficulty of developing a reliable robotic grasping system for already harvested trusses. We propose a method to grasp trusses that are stacked in a crate with considerable clutter, which is how they are commonly stored and transported after harvest. The method consists of a deep learning-based vision system to first identify the individual trusses in the crate and then determine a suitable grasping location on the stem. To this end, we have introduced a grasp pose ranking algorithm with online learning capabilities. After selecting the most promising grasp pose, the robot executes a pinch grasp without needing touch sensors or geometric models. Lab experiments with a robotic manipulator equipped with an eye-in-hand RGB-D camera showed a 100% clearance rate when tasked to pick all trusses from a pile. 93% of the trusses were successfully grasped on the first try, while the remaining 7% required more attempts.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE International Conference on Robotics and Automation (ICRA)
ISBN
979-8-3503-8457-4
ISSN
1050-4729
e-ISSN
2577-087X
Počet stran výsledku
7
Strana od-do
13947-13953
Název nakladatele
IEEE Industrial Electronic Society
Místo vydání
Vienna
Místo konání akce
Yokohama
Datum konání akce
13. 5. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001369728003111