An Empirical Investigation on Variational Autoencoder-Based Dynamic Modeling of Deformable Objects from RGB Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00376303" target="_blank" >RIV/68407700:21730/24:00376303 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/MED61351.2024.10566173" target="_blank" >https://doi.org/10.1109/MED61351.2024.10566173</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MED61351.2024.10566173" target="_blank" >10.1109/MED61351.2024.10566173</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Empirical Investigation on Variational Autoencoder-Based Dynamic Modeling of Deformable Objects from RGB Data
Popis výsledku v původním jazyce
Formulating the dynamics of continuously deformable objects and other mechanical systems analytically from first principles is an exceedingly challenging task, often impractical in real-world scenarios. What makes this challenge even harder to solve is that, usually, the object has not been observed previously, and the only information that we can get from it is a stream of RGB camera data. In this study, we explore the use of deep learning techniques to solve this nonlinear identification problem. We specifically focus on extracting dynamic models of simple deformable objects from the high-dimensional sensor input coming from an RGB camera. We investigate a two-stage approach to achieve this goal. First, we train a variational autoencoder to extract an extremely low-dimensional representation of the object configuration. Then, we learn a dynamic model that predicts the evolution of these latent space variables. The proposed architecture can accurately predict the object's state up to one second into the future.
Název v anglickém jazyce
An Empirical Investigation on Variational Autoencoder-Based Dynamic Modeling of Deformable Objects from RGB Data
Popis výsledku anglicky
Formulating the dynamics of continuously deformable objects and other mechanical systems analytically from first principles is an exceedingly challenging task, often impractical in real-world scenarios. What makes this challenge even harder to solve is that, usually, the object has not been observed previously, and the only information that we can get from it is a stream of RGB camera data. In this study, we explore the use of deep learning techniques to solve this nonlinear identification problem. We specifically focus on extracting dynamic models of simple deformable objects from the high-dimensional sensor input coming from an RGB camera. We investigate a two-stage approach to achieve this goal. First, we train a variational autoencoder to extract an extremely low-dimensional representation of the object configuration. Then, we learn a dynamic model that predicts the evolution of these latent space variables. The proposed architecture can accurately predict the object's state up to one second into the future.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
32nd Mediterranean Conference on Control and Automation (MED)
ISBN
979-8-3503-9545-7
ISSN
2325-369X
e-ISSN
2473-3504
Počet stran výsledku
8
Strana od-do
921-928
Název nakladatele
IEEE Xplore
Místo vydání
—
Místo konání akce
Chania, Kréta
Datum konání akce
11. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—