Action Recognition System Integrating Motion and Object Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00377218" target="_blank" >RIV/68407700:21730/24:00377218 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-72359-9_19" target="_blank" >https://doi.org/10.1007/978-3-031-72359-9_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-72359-9_19" target="_blank" >10.1007/978-3-031-72359-9_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Action Recognition System Integrating Motion and Object Detection
Popis výsledku v původním jazyce
In this paper, we present a novel action recognition system based on the integration of information from two separate modules. The first module is responsible for motion detection and categorization. The second module is an instance segmentation module that recognizes objects and their positions in the scene. The information from both modules is integrated in the third module that recognizes the actions based on motion and object detection. Compared to the traditional systems based on motion detection, we are able to recognize fake actions (gestures) where no contextual objects are presented in the scene. Moreover, we detect the average motion speed of contextual objects to increase the precision of detected actions. We create a dataset of eight action types that include assembly actions with tools and also corresponding fake actions that have similar motion but where no tools are used. Our recognition system achieves 95.21% accuracy in this dataset compared to 85.52% for a system based on motion detection only. We demonstrate that combining data from two different sources can improve the overall results of the action recognition task. Our recognition system can be adopted in real world tasks to distinguish between real actions and gestures
Název v anglickém jazyce
Action Recognition System Integrating Motion and Object Detection
Popis výsledku anglicky
In this paper, we present a novel action recognition system based on the integration of information from two separate modules. The first module is responsible for motion detection and categorization. The second module is an instance segmentation module that recognizes objects and their positions in the scene. The information from both modules is integrated in the third module that recognizes the actions based on motion and object detection. Compared to the traditional systems based on motion detection, we are able to recognize fake actions (gestures) where no contextual objects are presented in the scene. Moreover, we detect the average motion speed of contextual objects to increase the precision of detected actions. We create a dataset of eight action types that include assembly actions with tools and also corresponding fake actions that have similar motion but where no tools are used. Our recognition system achieves 95.21% accuracy in this dataset compared to 85.52% for a system based on motion detection only. We demonstrate that combining data from two different sources can improve the overall results of the action recognition task. Our recognition system can be adopted in real world tasks to distinguish between real actions and gestures
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Neural Networks and Machine Learning – ICANN 2024 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, 15025 LNCS
ISBN
978-3-031-72359-9
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
11
Strana od-do
259-269
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Lugano-Viganello
Datum konání akce
17. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001331898500019