Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using scientific-grade CCDs for the direct detection of dark matter with the DAMIC-M experiment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A90107%2F22%3A00363786" target="_blank" >RIV/68407700:90107/22:00363786 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1088/1748-0221/17/08/C08004" target="_blank" >https://doi.org/10.1088/1748-0221/17/08/C08004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1748-0221/17/08/C08004" target="_blank" >10.1088/1748-0221/17/08/C08004</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using scientific-grade CCDs for the direct detection of dark matter with the DAMIC-M experiment

  • Popis výsledku v původním jazyce

    The DAMIC-M [1] project is devoted to the exploration of the hidden sector and the search for light dark matter particles using Charge-Coupled Devices (CCDs). It follows the DAMIC at SNOLAB [2] experiment which pioneered the detection of new particles through their interaction with the nucleus or the electrons of the bulk silicon of fully depleted CCDs. A kilogram-sized target mass will be installed at the Modane underground laboratory (LSM, France) which offers an excellent low background environment for rare-event search. DAMIC-M detectors demonstrate several technological advancements including the implementation of the skipper technique, and custom front-end control and read-out electronics. Skipper CCDs can perform multiple non-destructive measurements of the pixel charge which can lead to a read-out noise of a fraction of an electron. With a 15 mu m x 15 mu m pixel area, 675 mu m thickness and the ability of 3D reconstruction using the diffusion of the particle track, the spatial resolution of our CCDs allows for the follow-up of radioactive chains, a powerful tool to discriminate genuine particle interaction from in situ radioactive decays. Together with an extremely careful fabrication procedure that controls the contaminant and the generation of bulk radioactive contamination by cosmic ray spallation, the single electron resolution will guarantee a detection energy threshold of only a few eVs, pushing the sensitivity of DAMIC-M by at least one order of magnitude better than previous experiments. I will present the current status of DAMIC-M describing our technological challenges and the solutions we have adopted. I will introduce our method to measure and mitigate the bulk radioactive contamination and discuss the ongoing assembly of a prototype detector, the Low Background Chamber (LBC), aiming at validating our design options.

  • Název v anglickém jazyce

    Using scientific-grade CCDs for the direct detection of dark matter with the DAMIC-M experiment

  • Popis výsledku anglicky

    The DAMIC-M [1] project is devoted to the exploration of the hidden sector and the search for light dark matter particles using Charge-Coupled Devices (CCDs). It follows the DAMIC at SNOLAB [2] experiment which pioneered the detection of new particles through their interaction with the nucleus or the electrons of the bulk silicon of fully depleted CCDs. A kilogram-sized target mass will be installed at the Modane underground laboratory (LSM, France) which offers an excellent low background environment for rare-event search. DAMIC-M detectors demonstrate several technological advancements including the implementation of the skipper technique, and custom front-end control and read-out electronics. Skipper CCDs can perform multiple non-destructive measurements of the pixel charge which can lead to a read-out noise of a fraction of an electron. With a 15 mu m x 15 mu m pixel area, 675 mu m thickness and the ability of 3D reconstruction using the diffusion of the particle track, the spatial resolution of our CCDs allows for the follow-up of radioactive chains, a powerful tool to discriminate genuine particle interaction from in situ radioactive decays. Together with an extremely careful fabrication procedure that controls the contaminant and the generation of bulk radioactive contamination by cosmic ray spallation, the single electron resolution will guarantee a detection energy threshold of only a few eVs, pushing the sensitivity of DAMIC-M by at least one order of magnitude better than previous experiments. I will present the current status of DAMIC-M describing our technological challenges and the solutions we have adopted. I will introduce our method to measure and mitigate the bulk radioactive contamination and discuss the ongoing assembly of a prototype detector, the Low Background Chamber (LBC), aiming at validating our design options.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10303 - Particles and field physics

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Instrumentation

  • ISSN

    1748-0221

  • e-ISSN

    1748-0221

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    5

  • Strana od-do

    1-5

  • Kód UT WoS článku

    000858793300004

  • EID výsledku v databázi Scopus