Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Long Short-Term Memory Recurrent Network Architectures for Electromagnetic Field Reconstruction Based on Underground Observations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A90263%2F24%3A00381467" target="_blank" >RIV/68407700:90263/24:00381467 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/atmos15060734" target="_blank" >https://doi.org/10.3390/atmos15060734</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/atmos15060734" target="_blank" >10.3390/atmos15060734</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Long Short-Term Memory Recurrent Network Architectures for Electromagnetic Field Reconstruction Based on Underground Observations

  • Popis výsledku v původním jazyce

    Deep underground laboratories offer advantages for conducting high-precision observations of weak geophysical signals, benefiting from a low background noise level. Enhancing strong, noisy ground electromagnetic (EM) field data using synchronously recorded underground EM signals, which typically exhibit a high signal-to-noise ratio, is both valuable and feasible. In this study, we propose an EM field reconstruction method employing a Long Short-Term Memory (LSTM) recurrent neural network with referenced deep underground EM observations. Initially, a deep learning model was developed to capture the time-varying features of underground multi-component EM fields using the LSTM recurrent neural network. Subsequently, this model was applied to process synchronously observed strong, noisy data from other conventional observation systems, such as those at the surface, to achieve noise suppression through signal reconstructions. Both the theoretical analysis and the practical observational data suggest that the proposed method effectively suppresses noise and reconstructs clean EM signals. This method is efficient and time-saving, representing an effective approach to fully utilizing the advantages of deep underground observation data. Furthermore, this method could be extended to the processing and analysis of other geophysical data.

  • Název v anglickém jazyce

    Long Short-Term Memory Recurrent Network Architectures for Electromagnetic Field Reconstruction Based on Underground Observations

  • Popis výsledku anglicky

    Deep underground laboratories offer advantages for conducting high-precision observations of weak geophysical signals, benefiting from a low background noise level. Enhancing strong, noisy ground electromagnetic (EM) field data using synchronously recorded underground EM signals, which typically exhibit a high signal-to-noise ratio, is both valuable and feasible. In this study, we propose an EM field reconstruction method employing a Long Short-Term Memory (LSTM) recurrent neural network with referenced deep underground EM observations. Initially, a deep learning model was developed to capture the time-varying features of underground multi-component EM fields using the LSTM recurrent neural network. Subsequently, this model was applied to process synchronously observed strong, noisy data from other conventional observation systems, such as those at the surface, to achieve noise suppression through signal reconstructions. Both the theoretical analysis and the practical observational data suggest that the proposed method effectively suppresses noise and reconstructs clean EM signals. This method is efficient and time-saving, representing an effective approach to fully utilizing the advantages of deep underground observation data. Furthermore, this method could be extended to the processing and analysis of other geophysical data.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Atmosphere

  • ISSN

    2073-4433

  • e-ISSN

    2073-4433

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Kód UT WoS článku

    001254452200001

  • EID výsledku v databázi Scopus

    2-s2.0-85197128714