Entry flow vortices in polymer melt extrusion: A review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F17%3A63516105" target="_blank" >RIV/70883521:28110/17:63516105 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1063/1.4982983" target="_blank" >http://dx.doi.org/10.1063/1.4982983</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4982983" target="_blank" >10.1063/1.4982983</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Entry flow vortices in polymer melt extrusion: A review
Popis výsledku v původním jazyce
Although, circular or planar abrupt entry flows are geometrically very simple hydrodynamic problem highly viscoelastic polymer melts makes it very complex with extreme differences in velocities and stresses across the geometry. Despite these flows are very common in polymer melt extrusion industry their strongly non-viscometric and transient nature represents exceedingly challenging task for experimental as well as theoretical investigation and consequently complicates their fully understanding. Polymer melts flowing through abrupt entry contractions exhibit several unique features of which the vortices are one of them. Occurrence of infinitesimal stress singularity in the salient corner leads to presence of weak concave Newtonian viscous vortex. Moreover, polymer melts with increasing extensional to shear viscosity (Trouton) ratio as a function of flow rate exhibit strong convex elastic vortex caused by complete reorientation of stress field near the re-entrant corner (infinite stress singularity point) as a result of momentum balance in the flow direction. This leads to separation of the flow into the primary "funnel-shaped" flow around the centre line/plane on which the secondary recirculation flow(s) in the corner(s) (vortices) are superimposed. Polymer melt captured in the vortex very slowly rotates in the direction opposite to the main flow direction (2D simplification) or takes a helical path moving also in the third direction (real 3D flow). Since the first visual experimental observation performed by Tordella as well as preliminary theoretical prediction made by Langlois and Rivlin at the end of the 1950s this phenomenon represents one of the most fundamental rheological problem ever. In this review paper, the most important experimental as well as theoretical papers focused on entry flow vortices are reviewed and discussed.
Název v anglickém jazyce
Entry flow vortices in polymer melt extrusion: A review
Popis výsledku anglicky
Although, circular or planar abrupt entry flows are geometrically very simple hydrodynamic problem highly viscoelastic polymer melts makes it very complex with extreme differences in velocities and stresses across the geometry. Despite these flows are very common in polymer melt extrusion industry their strongly non-viscometric and transient nature represents exceedingly challenging task for experimental as well as theoretical investigation and consequently complicates their fully understanding. Polymer melts flowing through abrupt entry contractions exhibit several unique features of which the vortices are one of them. Occurrence of infinitesimal stress singularity in the salient corner leads to presence of weak concave Newtonian viscous vortex. Moreover, polymer melts with increasing extensional to shear viscosity (Trouton) ratio as a function of flow rate exhibit strong convex elastic vortex caused by complete reorientation of stress field near the re-entrant corner (infinite stress singularity point) as a result of momentum balance in the flow direction. This leads to separation of the flow into the primary "funnel-shaped" flow around the centre line/plane on which the secondary recirculation flow(s) in the corner(s) (vortices) are superimposed. Polymer melt captured in the vortex very slowly rotates in the direction opposite to the main flow direction (2D simplification) or takes a helical path moving also in the third direction (real 3D flow). Since the first visual experimental observation performed by Tordella as well as preliminary theoretical prediction made by Langlois and Rivlin at the end of the 1950s this phenomenon represents one of the most fundamental rheological problem ever. In this review paper, the most important experimental as well as theoretical papers focused on entry flow vortices are reviewed and discussed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-05886S" target="_blank" >GA16-05886S: Výzkum vlivu smykové a tahové reologie polymerních tavenin na stabilitu produkce meltblown nanovláken a fólií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings
ISBN
978-0-7354-1513-3
ISSN
0094-243X
e-ISSN
neuvedeno
Počet stran výsledku
21
Strana od-do
—
Název nakladatele
American Institute of Physics Publising Inc.
Místo vydání
Melville
Místo konání akce
Zlín
Datum konání akce
26. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—