Effect of filler particle shape on plastic-elastic mechanical behavior of high density poly(ethylene)/mica and poly(ethylene)/wollastonite composites
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F18%3A63516797" target="_blank" >RIV/70883521:28110/18:63516797 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/18:73582950 RIV/70883521:28140/18:63516797 RIV/61989100:27230/18:10239409
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1359836817326161" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1359836817326161</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compositesb.2017.12.035" target="_blank" >10.1016/j.compositesb.2017.12.035</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of filler particle shape on plastic-elastic mechanical behavior of high density poly(ethylene)/mica and poly(ethylene)/wollastonite composites
Popis výsledku v původním jazyce
It was found in this study that both fillers (mica and wollastonite) trigger an increase in Young's modulus of elasticity with increasing filler concentration in a HDPE composites matrix. In the case of HDPE/mica the same improvement was also found for the upper yield point vs. filler concentration dependencies indicating higher stiffness. However, for the HDPE/wollastonite composites the opposite trend was observed, i.e. a decrease of the upper yield point and strain at break. These findings were also confirmed by mechanical vibration damping testing where there was found a more intense shift of the first resonance frequency peak position to higher frequencies with increasing filler concentrations for HDPE/mica in comparison to HDPE/wollastonite composites. Both composites exhibited decreasing strain at break with increasing filler concentration indicating a more brittle mechanical behavior in comparison to the virgin HDPE polymer matrix. However, for HDPE/wollastonite composites at 5 w. % filler concentration a 15% increase in the magnitude of the strain at break was found indicating an increase in ductility at 50 mm/min deformation rate. Fracture toughness measurements show, that both studied fillers function as the stress concentrators in the HDPE polymer matrix, which was reflected in the exponentially decreasing dependencies of the fracture toughness vs. filler concentrations. SEM analysis of the fracture surfaces show typical elongation bands of high plasticity deformation regions characteristic of typical shearing bands, interpenetrated with cavities created around filler particles. Thermal analysis data showed for HDPE/mica a strong increase of the crystallinity with increasing filler concentration, however in the case of HDPE/wollastonite the opposite effect of a higher amorphous polymer phase content was found.
Název v anglickém jazyce
Effect of filler particle shape on plastic-elastic mechanical behavior of high density poly(ethylene)/mica and poly(ethylene)/wollastonite composites
Popis výsledku anglicky
It was found in this study that both fillers (mica and wollastonite) trigger an increase in Young's modulus of elasticity with increasing filler concentration in a HDPE composites matrix. In the case of HDPE/mica the same improvement was also found for the upper yield point vs. filler concentration dependencies indicating higher stiffness. However, for the HDPE/wollastonite composites the opposite trend was observed, i.e. a decrease of the upper yield point and strain at break. These findings were also confirmed by mechanical vibration damping testing where there was found a more intense shift of the first resonance frequency peak position to higher frequencies with increasing filler concentrations for HDPE/mica in comparison to HDPE/wollastonite composites. Both composites exhibited decreasing strain at break with increasing filler concentration indicating a more brittle mechanical behavior in comparison to the virgin HDPE polymer matrix. However, for HDPE/wollastonite composites at 5 w. % filler concentration a 15% increase in the magnitude of the strain at break was found indicating an increase in ductility at 50 mm/min deformation rate. Fracture toughness measurements show, that both studied fillers function as the stress concentrators in the HDPE polymer matrix, which was reflected in the exponentially decreasing dependencies of the fracture toughness vs. filler concentrations. SEM analysis of the fracture surfaces show typical elongation bands of high plasticity deformation regions characteristic of typical shearing bands, interpenetrated with cavities created around filler particles. Thermal analysis data showed for HDPE/mica a strong increase of the crystallinity with increasing filler concentration, however in the case of HDPE/wollastonite the opposite effect of a higher amorphous polymer phase content was found.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1305" target="_blank" >LO1305: Rozvoj centra pokročilých technologií a materiálů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Composites Part B-Engineering
ISSN
1359-8368
e-ISSN
—
Svazek periodika
141
Číslo periodika v rámci svazku
May 15
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
92-99
Kód UT WoS článku
000430779100010
EID výsledku v databázi Scopus
2-s2.0-85039768890