Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown polypropylenes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F18%3A63517056" target="_blank" >RIV/70883521:28110/18:63517056 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jnnfm.2017.11.009" target="_blank" >http://dx.doi.org/10.1016/j.jnnfm.2017.11.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnnfm.2017.11.009" target="_blank" >10.1016/j.jnnfm.2017.11.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown polypropylenes
Popis výsledku v původním jazyce
In this work, three melt blown grades of isotactic linear polypropylenes, with weight average molecular weights between 56 250–75 850 g/mol, have been characterized at 230 °C over a very wide shear rate range (10–107 1/s) by using conventional rotational and twin bore capillary rheometry equipped with novel orifice die, and by an instrumented capillary nozzle on an injection molding machine. A low shear rate primary Newtonian plateau, a pseudoplastic region and a well developed secondary Newtonian plateau (occurring between 2·106−7·106 1/s) were identified for all the polypropylene melts. Flow activation energy at low (E0) and high (E∞) shear rates was found to be 56.590 kJ/mol and 25.204 kJ/mol, respectively. Considering the typical value of pressure sensitivity coefficient for polypropylene melt, β = 20.00 GPa−1, and measured flow activation energy at the secondary Newtonian plateau, E∞ = 25.204 kJ/mol, it was found that the effect of viscous dissipation and pressure is mutually cancelled, i.e. that the measured viscosity data can be considered as the true material property within the whole applied shear rate range. For the first time, it has been revealed that the secondary Newtonian viscosity, η∞, depends linearly on the weight average molecular weight, Mw, in log-log scale as η∞=1.19·10−6Mw 1.084. The observed slope close to 1 between η∞ and Mw suggests that polymer chains in the melt are disentangled at the secondary Newtonian plateau region. This conclusion is supported by the experimental observation that the high shear rate flow activation energy E∞ for given PP melts is comparable with the flow activation energy of PP like oligomer (squalane, C30H62; 2,6,10,15,19,23-hexamethyltetracosane). The measured flow data were fitted by six different viscosity models, from which two, namely Modified Carreau and Quemada models, were suggested here for the first time. It has been found that the accuracy of utilized models to describe the measured data is the highest for the newly suggested models and decreases in the following order: Modified Quemada model, Modified Carreau model, Carreau-Yasuda model, Cross model, Generalized Quemada model and Carreau model.
Název v anglickém jazyce
Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown polypropylenes
Popis výsledku anglicky
In this work, three melt blown grades of isotactic linear polypropylenes, with weight average molecular weights between 56 250–75 850 g/mol, have been characterized at 230 °C over a very wide shear rate range (10–107 1/s) by using conventional rotational and twin bore capillary rheometry equipped with novel orifice die, and by an instrumented capillary nozzle on an injection molding machine. A low shear rate primary Newtonian plateau, a pseudoplastic region and a well developed secondary Newtonian plateau (occurring between 2·106−7·106 1/s) were identified for all the polypropylene melts. Flow activation energy at low (E0) and high (E∞) shear rates was found to be 56.590 kJ/mol and 25.204 kJ/mol, respectively. Considering the typical value of pressure sensitivity coefficient for polypropylene melt, β = 20.00 GPa−1, and measured flow activation energy at the secondary Newtonian plateau, E∞ = 25.204 kJ/mol, it was found that the effect of viscous dissipation and pressure is mutually cancelled, i.e. that the measured viscosity data can be considered as the true material property within the whole applied shear rate range. For the first time, it has been revealed that the secondary Newtonian viscosity, η∞, depends linearly on the weight average molecular weight, Mw, in log-log scale as η∞=1.19·10−6Mw 1.084. The observed slope close to 1 between η∞ and Mw suggests that polymer chains in the melt are disentangled at the secondary Newtonian plateau region. This conclusion is supported by the experimental observation that the high shear rate flow activation energy E∞ for given PP melts is comparable with the flow activation energy of PP like oligomer (squalane, C30H62; 2,6,10,15,19,23-hexamethyltetracosane). The measured flow data were fitted by six different viscosity models, from which two, namely Modified Carreau and Quemada models, were suggested here for the first time. It has been found that the accuracy of utilized models to describe the measured data is the highest for the newly suggested models and decreases in the following order: Modified Quemada model, Modified Carreau model, Carreau-Yasuda model, Cross model, Generalized Quemada model and Carreau model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-05886S" target="_blank" >GA16-05886S: Výzkum vlivu smykové a tahové reologie polymerních tavenin na stabilitu produkce meltblown nanovláken a fólií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Non-Newtonian Fluid Mechanics
ISSN
0377-0257
e-ISSN
—
Svazek periodika
251
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
107-118
Kód UT WoS článku
000423003600010
EID výsledku v databázi Scopus
2-s2.0-85037540603