An Effect of Salt Concentration and Inoculum Size on Poly(Vinyl Alcohol) Utilization by Two Sphingomonas Strains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F18%3A63520428" target="_blank" >RIV/70883521:28110/18:63520428 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10924-017-1122-2" target="_blank" >http://dx.doi.org/10.1007/s10924-017-1122-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10924-017-1122-2" target="_blank" >10.1007/s10924-017-1122-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Effect of Salt Concentration and Inoculum Size on Poly(Vinyl Alcohol) Utilization by Two Sphingomonas Strains
Popis výsledku v původním jazyce
Due to its widespread use and water solubility, poly(vinyl alcohol) (PVA) has the potential to find its way into various water or soil ecosystems. Despite the fact that many bacterial species with the capacity of utilizing PVA have been found and described, the influences of some environmental factors on their capabilities to biodegrade PVA have not been adequately studied. Therefore, study was made of the effects of two environmental factors on PVA degradation exhibited by two Sphingomonas strains. Both strains originated from common wastewater treatment plants, and proved to be considerably sensitive to increased inorganic salt concentrations; in brief, 13.3 mmol/l either of phosphate or chloride ions significantly delayed the degradation process or inhibited it entirely. In contrast to such halosensitivity, both strains were able to rapidly utilize PVA under suitable conditions, even when low inoculum sizes were applied. Initial cell densities, ranging from 100 to 107 cells/ml, were used in two series of degradation trials and PVA degradation occurred in all cases; merely delays extending over several days in the degradation process were noted when inoculum sizes of 100–103 cells/ml were applied.
Název v anglickém jazyce
An Effect of Salt Concentration and Inoculum Size on Poly(Vinyl Alcohol) Utilization by Two Sphingomonas Strains
Popis výsledku anglicky
Due to its widespread use and water solubility, poly(vinyl alcohol) (PVA) has the potential to find its way into various water or soil ecosystems. Despite the fact that many bacterial species with the capacity of utilizing PVA have been found and described, the influences of some environmental factors on their capabilities to biodegrade PVA have not been adequately studied. Therefore, study was made of the effects of two environmental factors on PVA degradation exhibited by two Sphingomonas strains. Both strains originated from common wastewater treatment plants, and proved to be considerably sensitive to increased inorganic salt concentrations; in brief, 13.3 mmol/l either of phosphate or chloride ions significantly delayed the degradation process or inhibited it entirely. In contrast to such halosensitivity, both strains were able to rapidly utilize PVA under suitable conditions, even when low inoculum sizes were applied. Initial cell densities, ranging from 100 to 107 cells/ml, were used in two series of degradation trials and PVA degradation occurred in all cases; merely delays extending over several days in the degradation process were noted when inoculum sizes of 100–103 cells/ml were applied.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Polymers and the Environment
ISSN
1566-2543
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
2227-2233
Kód UT WoS článku
000432803400003
EID výsledku v databázi Scopus
2-s2.0-85030683347