Microwave-assisted synthesis of a manganese metal–organic framework and its transformation to porous MnO/carbon nanocomposite utilized as a shuttle suppressing layer in lithium–sulfur batteries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F19%3A63523582" target="_blank" >RIV/70883521:28110/19:63523582 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/19:00113063 RIV/70883521:28610/19:63523582 RIV/00216305:26220/19:PU132936
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/s10853-019-03871-4.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s10853-019-03871-4.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10853-019-03871-4" target="_blank" >10.1007/s10853-019-03871-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Microwave-assisted synthesis of a manganese metal–organic framework and its transformation to porous MnO/carbon nanocomposite utilized as a shuttle suppressing layer in lithium–sulfur batteries
Popis výsledku v původním jazyce
In this work, the microwave-assisted synthesis of manganese metal–organic framework (MOF) material is presented. Synthesis procedure is based on a microwave-assisted solvothermal reaction of manganese(III) acetylacetonate with biphenyl-4,4′-dicarboxylic acid (Bpdc) in N,N′-dimethylformamide at the temperature of 160 °C. The obtained Mn-based metal–organic framework, labeled as Mn-Bpdc, was used as a precursor for the preparation of a porous MnO/carbon nanocomposite, which was obtained via thermal transformation in a nitrogen atmosphere at 700 °C. It was found that this approach provides an effective and simple preparation pathway for porous carbon decorated with homogeneously embedded manganese(II) oxide nanoparticles. Both Mn-Bpdc and MnO/C nanocomposite materials were characterized by a variety of physicochemical methods. The prepared MnO/C nanocomposite material was deposited on a cathode surface of lithium-sulfur batteries and utilized as a shuttle suppressing layer. This electrode structure immobilizes polysulfides inside the cathode and improves the stability during cycling. The electrode with MnO/C nanocomposite shuttle suppressing layer maintains high stability during cycling in comparison with a standard electrode. The electrode with MnO/C composite layer exhibits 84.8% capacity retention after 50 cycles at different C-rates compared to 76.2% obtained for the standard electrode.
Název v anglickém jazyce
Microwave-assisted synthesis of a manganese metal–organic framework and its transformation to porous MnO/carbon nanocomposite utilized as a shuttle suppressing layer in lithium–sulfur batteries
Popis výsledku anglicky
In this work, the microwave-assisted synthesis of manganese metal–organic framework (MOF) material is presented. Synthesis procedure is based on a microwave-assisted solvothermal reaction of manganese(III) acetylacetonate with biphenyl-4,4′-dicarboxylic acid (Bpdc) in N,N′-dimethylformamide at the temperature of 160 °C. The obtained Mn-based metal–organic framework, labeled as Mn-Bpdc, was used as a precursor for the preparation of a porous MnO/carbon nanocomposite, which was obtained via thermal transformation in a nitrogen atmosphere at 700 °C. It was found that this approach provides an effective and simple preparation pathway for porous carbon decorated with homogeneously embedded manganese(II) oxide nanoparticles. Both Mn-Bpdc and MnO/C nanocomposite materials were characterized by a variety of physicochemical methods. The prepared MnO/C nanocomposite material was deposited on a cathode surface of lithium-sulfur batteries and utilized as a shuttle suppressing layer. This electrode structure immobilizes polysulfides inside the cathode and improves the stability during cycling. The electrode with MnO/C nanocomposite shuttle suppressing layer maintains high stability during cycling in comparison with a standard electrode. The electrode with MnO/C composite layer exhibits 84.8% capacity retention after 50 cycles at different C-rates compared to 76.2% obtained for the standard electrode.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Science
ISSN
0022-2461
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
14102-14122
Kód UT WoS článku
000482914800018
EID výsledku v databázi Scopus
2-s2.0-85070100066