Particle Size, Cation Distribution and Magnetic Properties of Intelligent Spinel Ferrite Nanoparticles and its Application
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F19%3A63524201" target="_blank" >RIV/70883521:28110/19:63524201 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/70883521:28610/19:63524201
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Particle Size, Cation Distribution and Magnetic Properties of Intelligent Spinel Ferrite Nanoparticles and its Application
Popis výsledku v původním jazyce
Intelligent spinel ferrite nanoparticles have a vast potential for several scientific and technological applications such as in solar cells, magnetostrictive sensors, transducers, actuators, supercapacitors, Li-ion batteries, drug delivery, hyperthermia, memory devices, microwave and spintronic devices, catalysis, gas sensor, etc. The physical properties of spinel ferrite nanoparticles depend on particle size and cation distribution at tetrahedral and octahedral sites. A better understanding of structural characteristics of spinel ferrite nanoparticles are highly beneficial to tune the physical properties for desired applications. Herein, efforts were carried out to synthesize spinel ferrite nanoparticles by a sonochemical method and to investigate their particle size, cation distribution, magnetic, dielectric, electrical, impedance and modulus spectroscopy characteristics for microwave frequency applications. The sonochemically synthesized spinel ferrite nanoparticles were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometer (VSM), etc. The XRD results revealed that ultrasonic irradiation seems to be favourable to achieve highly crystalline single crystal phase of spinel ferrite nanoparticles without any post annealing process. Fourier Transform Infrared and Raman Spectra confirmed the formation of spinel ferrite crystal structure. X-ray photoelectron spectroscopy revealed the cation redistribution at the tetrahedral and octahedral site in spinel ferrite nanoparticle with change of particle size. This work demonstrates that the particle size and cation redistribution in spinel ferrite nanoparticles synthesized by sonochemical method, is effective way to tune the physical characteristics, and consequently it can receive very promising desired applications. This work was financially supported by the Czech Science Foundation (GA19-23647S) project at CPS.
Název v anglickém jazyce
Particle Size, Cation Distribution and Magnetic Properties of Intelligent Spinel Ferrite Nanoparticles and its Application
Popis výsledku anglicky
Intelligent spinel ferrite nanoparticles have a vast potential for several scientific and technological applications such as in solar cells, magnetostrictive sensors, transducers, actuators, supercapacitors, Li-ion batteries, drug delivery, hyperthermia, memory devices, microwave and spintronic devices, catalysis, gas sensor, etc. The physical properties of spinel ferrite nanoparticles depend on particle size and cation distribution at tetrahedral and octahedral sites. A better understanding of structural characteristics of spinel ferrite nanoparticles are highly beneficial to tune the physical properties for desired applications. Herein, efforts were carried out to synthesize spinel ferrite nanoparticles by a sonochemical method and to investigate their particle size, cation distribution, magnetic, dielectric, electrical, impedance and modulus spectroscopy characteristics for microwave frequency applications. The sonochemically synthesized spinel ferrite nanoparticles were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometer (VSM), etc. The XRD results revealed that ultrasonic irradiation seems to be favourable to achieve highly crystalline single crystal phase of spinel ferrite nanoparticles without any post annealing process. Fourier Transform Infrared and Raman Spectra confirmed the formation of spinel ferrite crystal structure. X-ray photoelectron spectroscopy revealed the cation redistribution at the tetrahedral and octahedral site in spinel ferrite nanoparticle with change of particle size. This work demonstrates that the particle size and cation redistribution in spinel ferrite nanoparticles synthesized by sonochemical method, is effective way to tune the physical characteristics, and consequently it can receive very promising desired applications. This work was financially supported by the Czech Science Foundation (GA19-23647S) project at CPS.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-23647S" target="_blank" >GA19-23647S: Výzkum korelace mezi distribucí kationů, velikostí částic a fyzikálních vlastností inteligentních spinel-feritových nanomateriálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů