Hyperelastic material characterization: How the change in mooney-rivlin parameter values effect the model curve
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F20%3A63526137" target="_blank" >RIV/70883521:28110/20:63526137 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scientific.net/MSF.994.265" target="_blank" >https://www.scientific.net/MSF.994.265</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4028/www.scientific.net/msf.994.265" target="_blank" >10.4028/www.scientific.net/msf.994.265</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hyperelastic material characterization: How the change in mooney-rivlin parameter values effect the model curve
Popis výsledku v původním jazyce
Mooney-Rivlin is the most frequently used model from all models used for mechanical characterization of the hyperelestic materials. Simplicity, applicability in a large range of strains are the key reasons for regular use of this model. However, depending on the number of parameters, the Mooney model can take several forms. While, nine parameter being the highest order noticed, two parameter model is the most commonly found form in the current research domain. Since two parameter model used repetitively, we investigated the effect of incremental change in two material constant values one at a time, on model curve. As Drucker stability criterion is governing the extreme values of material parameters, changes in the model curves are discussed related to it. Resultant effects on stress-strain curves due to change in parameter values were examined and physical effect on the characterization is interpreted accordingly.
Název v anglickém jazyce
Hyperelastic material characterization: How the change in mooney-rivlin parameter values effect the model curve
Popis výsledku anglicky
Mooney-Rivlin is the most frequently used model from all models used for mechanical characterization of the hyperelestic materials. Simplicity, applicability in a large range of strains are the key reasons for regular use of this model. However, depending on the number of parameters, the Mooney model can take several forms. While, nine parameter being the highest order noticed, two parameter model is the most commonly found form in the current research domain. Since two parameter model used repetitively, we investigated the effect of incremental change in two material constant values one at a time, on model curve. As Drucker stability criterion is governing the extreme values of material parameters, changes in the model curves are discussed related to it. Resultant effects on stress-strain curves due to change in parameter values were examined and physical effect on the characterization is interpreted accordingly.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Science Forum
ISSN
0255-5476
e-ISSN
—
Svazek periodika
994
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
7
Strana od-do
265-271
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85086768181