Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Introduction of an adhesion factor to cube in cube models and its effect on calculated moduli of particulate composites

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F22%3A63556858" target="_blank" >RIV/70883521:28110/22:63556858 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/70883521:28610/22:63556858

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41598-022-20629-2" target="_blank" >https://www.nature.com/articles/s41598-022-20629-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-022-20629-2" target="_blank" >10.1038/s41598-022-20629-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Introduction of an adhesion factor to cube in cube models and its effect on calculated moduli of particulate composites

  • Popis výsledku v původním jazyce

    The cube in cube approach was used by Paul and Ishai-Cohen to model and derive formulas for filler content dependent Young&apos;s moduli of particle filled composites assuming perfect filler matrix adhesion. Their formulas were chosen because of their simplicity, and recalculated using an elementary volume approach which transforms spherical inclusions to cubic inclusions. The EV approach led to expression of the composites moduli that allows introducing an adhesion factor kadh ranging from 0 and 1 to take into account reduced filler matrix adhesion. This adhesion factor scales the edge length of the cubic inclusions, thus reducing the stress transfer area between matrix and filler. Fitting the experimental data with the modified Paul model provides reasonable k(adh) for PA66, PBT, PP, PE-LD and BR which are in line with their surface energies. Further analysis showed that stiffening only occurs if k(adh) exceeds root E-M/E-F and depends on the ratio of matrix modulus and filler modulus. The modified model allows for a quick calculation of any particle filled composites for known matrix modulus E-M, filler modulus E-F, filler volume content v(F) and adhesion factor k(adh). Thus, finite element analysis (FEA) simulations of any particle filled polymer parts as well as materials selection are significantly eased. FEA of cubic and hexagonal EV arrangements show that stress distributions within the EV exhibit more shear stresses if one deviates from the cubic arrangement. At high filler contents the assumption that the property of the EV is representative for the whole composite, holds only for filler volume contents up to 15 or 20% (corresponding to 30 to 40 weight %). Thus, for vast majority of commercially available particulate composites, the modified model can be applied. Furthermore, this indicates that the cube in cube approach reaches two limits: (i) the occurrence of increasing shear stresses at filler contents above 20% due to deviations of EV arrangements or spatial filler distribution from cubic arrangements (singular), and (ii) increasing interaction between particles with the formation of particle network within the matrix violating the EV assumption of their homogeneous dispersion.

  • Název v anglickém jazyce

    Introduction of an adhesion factor to cube in cube models and its effect on calculated moduli of particulate composites

  • Popis výsledku anglicky

    The cube in cube approach was used by Paul and Ishai-Cohen to model and derive formulas for filler content dependent Young&apos;s moduli of particle filled composites assuming perfect filler matrix adhesion. Their formulas were chosen because of their simplicity, and recalculated using an elementary volume approach which transforms spherical inclusions to cubic inclusions. The EV approach led to expression of the composites moduli that allows introducing an adhesion factor kadh ranging from 0 and 1 to take into account reduced filler matrix adhesion. This adhesion factor scales the edge length of the cubic inclusions, thus reducing the stress transfer area between matrix and filler. Fitting the experimental data with the modified Paul model provides reasonable k(adh) for PA66, PBT, PP, PE-LD and BR which are in line with their surface energies. Further analysis showed that stiffening only occurs if k(adh) exceeds root E-M/E-F and depends on the ratio of matrix modulus and filler modulus. The modified model allows for a quick calculation of any particle filled composites for known matrix modulus E-M, filler modulus E-F, filler volume content v(F) and adhesion factor k(adh). Thus, finite element analysis (FEA) simulations of any particle filled polymer parts as well as materials selection are significantly eased. FEA of cubic and hexagonal EV arrangements show that stress distributions within the EV exhibit more shear stresses if one deviates from the cubic arrangement. At high filler contents the assumption that the property of the EV is representative for the whole composite, holds only for filler volume contents up to 15 or 20% (corresponding to 30 to 40 weight %). Thus, for vast majority of commercially available particulate composites, the modified model can be applied. Furthermore, this indicates that the cube in cube approach reaches two limits: (i) the occurrence of increasing shear stresses at filler contents above 20% due to deviations of EV arrangements or spatial filler distribution from cubic arrangements (singular), and (ii) increasing interaction between particles with the formation of particle network within the matrix violating the EV assumption of their homogeneous dispersion.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000861951000078

  • EID výsledku v databázi Scopus

    2-s2.0-85138921598