Experimental study of the bending behaviour of the neovius porous structure made additively from aluminium alloy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F23%3A63567438" target="_blank" >RIV/70883521:28110/23:63567438 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2226-4310/10/4/361" target="_blank" >https://www.mdpi.com/2226-4310/10/4/361</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/aerospace10040361" target="_blank" >10.3390/aerospace10040361</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental study of the bending behaviour of the neovius porous structure made additively from aluminium alloy
Popis výsledku v původním jazyce
Porous materials bring components not only direct advantages in the form of lightening of constructions, saving of production materials, or improvement of physical properties, but also secondary advantages, which are manifested as a result of their daily use, e.g., in aviation and the automotive industry, which is manifested in saving fuel and, thus, environmental protection. The aim of this article is to examine the influence of the volume ratio of a complex porous structure, the so-called Neovius, on bending properties. Samples with five different relative weights of 15, 20, 25, 30, and 50% (+/- 1%) were fabricated from AlSi10Mg aluminum alloy by Direct Laser Metal Sintering (DLMS) technology. A three-point bending test until specimen failure was performed at ambient temperature on a Zwick/Roell 1456 universal testing machine. The dependences of the bending forces on the deflection were recorded. The maximum stresses, energy absorption, and ductility indexes were calculated to compare the bending behavior of beams filled with this type of complex cellular structure. The results showed that Neovius, with a relative weight of 50%, was much more brittle compared to the other samples, while the Neovius structure, with a relative weight of 30%, appeared to be the most suitable structure for bent components among those tested. This study is a contribution not only to the development of the space and aviation industry but also to the expansion of the knowledge base in the field of material sciences. This know-how can also provide a basis for defining boundary conditions in the simulation of behavior and numerical analyses of 3D-printed lightweight components.
Název v anglickém jazyce
Experimental study of the bending behaviour of the neovius porous structure made additively from aluminium alloy
Popis výsledku anglicky
Porous materials bring components not only direct advantages in the form of lightening of constructions, saving of production materials, or improvement of physical properties, but also secondary advantages, which are manifested as a result of their daily use, e.g., in aviation and the automotive industry, which is manifested in saving fuel and, thus, environmental protection. The aim of this article is to examine the influence of the volume ratio of a complex porous structure, the so-called Neovius, on bending properties. Samples with five different relative weights of 15, 20, 25, 30, and 50% (+/- 1%) were fabricated from AlSi10Mg aluminum alloy by Direct Laser Metal Sintering (DLMS) technology. A three-point bending test until specimen failure was performed at ambient temperature on a Zwick/Roell 1456 universal testing machine. The dependences of the bending forces on the deflection were recorded. The maximum stresses, energy absorption, and ductility indexes were calculated to compare the bending behavior of beams filled with this type of complex cellular structure. The results showed that Neovius, with a relative weight of 50%, was much more brittle compared to the other samples, while the Neovius structure, with a relative weight of 30%, appeared to be the most suitable structure for bent components among those tested. This study is a contribution not only to the development of the space and aviation industry but also to the expansion of the knowledge base in the field of material sciences. This know-how can also provide a basis for defining boundary conditions in the simulation of behavior and numerical analyses of 3D-printed lightweight components.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Aerospace
ISSN
2226-4310
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000979231800001
EID výsledku v databázi Scopus
2-s2.0-85156126877