The Implementation of Neural Networks for Polymer Mold Surface Evaluation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F24%3A63578843" target="_blank" >RIV/70883521:28110/24:63578843 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/70883521:28610/24:63578843
Výsledek na webu
<a href="https://www.mdpi.com/2072-666X/15/1/102" target="_blank" >https://www.mdpi.com/2072-666X/15/1/102</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/mi15010102" target="_blank" >10.3390/mi15010102</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Implementation of Neural Networks for Polymer Mold Surface Evaluation
Popis výsledku v původním jazyce
This paper presents the measurement and evaluation of the surfaces of molds produced using additive technologies. This is an emerging trend in mold production. The surfaces of such molds must be treated, usually using laser-based alternative machining methods. Regular evaluation is necessary because of the gradually deteriorating quality of the mold surface. However, owing to the difficulty in scanning the original surface of the injection mold, it is necessary to perform surface replication. Therefore, this study aims to describe the production of surface replicas for in-house developed polymer molds together with the determination of suitable descriptive parameters, the method of comparing variances, and the mean values for the surface evaluation. Overall, this study presents a new summary of the evaluation process of replicas of the surfaces of polymer molds. The nonlinear regression methodology provides the corresponding functional dependencies between the relevant parameters. The statistical significance of a neural network with two hidden layers based on the principle of Rosenblatt’s perceptron has been proposed and verified. Additionally, machine learning was utilized to better compare the original surface and its replica.
Název v anglickém jazyce
The Implementation of Neural Networks for Polymer Mold Surface Evaluation
Popis výsledku anglicky
This paper presents the measurement and evaluation of the surfaces of molds produced using additive technologies. This is an emerging trend in mold production. The surfaces of such molds must be treated, usually using laser-based alternative machining methods. Regular evaluation is necessary because of the gradually deteriorating quality of the mold surface. However, owing to the difficulty in scanning the original surface of the injection mold, it is necessary to perform surface replication. Therefore, this study aims to describe the production of surface replicas for in-house developed polymer molds together with the determination of suitable descriptive parameters, the method of comparing variances, and the mean values for the surface evaluation. Overall, this study presents a new summary of the evaluation process of replicas of the surfaces of polymer molds. The nonlinear regression methodology provides the corresponding functional dependencies between the relevant parameters. The statistical significance of a neural network with two hidden layers based on the principle of Rosenblatt’s perceptron has been proposed and verified. Additionally, machine learning was utilized to better compare the original surface and its replica.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Micromachines
ISSN
2072-666X
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
001150888500001
EID výsledku v databázi Scopus
2-s2.0-85183321522