Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The effect of 3D printing orientation on tensile behaviour and fracture mechanisms of Inconel 718

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F24%3A63580059" target="_blank" >RIV/70883521:28110/24:63580059 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S135063072400966X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S135063072400966X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engfailanal.2024.108920" target="_blank" >10.1016/j.engfailanal.2024.108920</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The effect of 3D printing orientation on tensile behaviour and fracture mechanisms of Inconel 718

  • Popis výsledku v původním jazyce

    The manuscript aims to study the effect of 3D printing orientation on the tensile behaviour and fracture mechanisms of samples made of Inconel 718. Components of metals using additive manufacturing techniques are crucial in applications where safety, reliability, and trouble-free operation are essential. Therefore, it is vital to study and understand the behaviour of 3D-printed components under various loading types and predict potential failures. The EOS Nickel Alloy IN718 material sheet provides tensile properties of heat-treated samples (per AMS 5664 procedure) built exclusively in the Z direction. Consequently, the authors extended the investigation to include the tensile behaviour of 3D-printed samples in seven basic orientations within the 3D printing machine&apos;s workspace. For this purpose, the mechanical properties of Inconel 718 alloy samples manufactured using Direct Metal Laser Sintering (DMLS) technology were subjected to uniaxial tensile stress. The samples underwent heat treatment according to the AMS 5664 procedure, with solution annealing and aging temperatures determined using a pseudo-binary phase diagram calculated with Thermo-Calc® software. Post-tensile tests and fracture surface observations were conducted to identify the main failure modes. Microstructural and morphological analyses of 3D-printed INCONEL 718 samples were carried out using light optical microscopy (LOM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) textural analysis. Phase diagrams indicate expected phases such as γ-phase (FCC_A1), δ-phase (NbNi3_D0A), γ’’-phase (Ni3Ti_D024), Laves phase (C14_Laves), and γ’-phase (FCC_L12). Solution annealing was performed above 940 °C while aging treatment was done at temperatures below 800 °C to allow precipitation of γ’ and γ’’ phases. The δ phase also forms during aging. Fractographic examination of the tensile fractures indicated a predominantly quasi-ductile failure mechanism, with fine-sized dimples observed. In the XZ-oriented samples, the measured yield strength was 11 % higher compared to the Z-oriented samples and the yield strength was more than 12 % higher. The difference in mechanical properties between the Z orientation (Rp0.2 = 1284 MPa and Rm = 1429 MPa) and the XZ orientation (Rp0.2 = 1436 MPa and Rm = 1613 MPa) can be mainly attributed to the &lt; 101 &gt; texture in the XZ sample and its more equiaxed grain structure compared to the Z sample.

  • Název v anglickém jazyce

    The effect of 3D printing orientation on tensile behaviour and fracture mechanisms of Inconel 718

  • Popis výsledku anglicky

    The manuscript aims to study the effect of 3D printing orientation on the tensile behaviour and fracture mechanisms of samples made of Inconel 718. Components of metals using additive manufacturing techniques are crucial in applications where safety, reliability, and trouble-free operation are essential. Therefore, it is vital to study and understand the behaviour of 3D-printed components under various loading types and predict potential failures. The EOS Nickel Alloy IN718 material sheet provides tensile properties of heat-treated samples (per AMS 5664 procedure) built exclusively in the Z direction. Consequently, the authors extended the investigation to include the tensile behaviour of 3D-printed samples in seven basic orientations within the 3D printing machine&apos;s workspace. For this purpose, the mechanical properties of Inconel 718 alloy samples manufactured using Direct Metal Laser Sintering (DMLS) technology were subjected to uniaxial tensile stress. The samples underwent heat treatment according to the AMS 5664 procedure, with solution annealing and aging temperatures determined using a pseudo-binary phase diagram calculated with Thermo-Calc® software. Post-tensile tests and fracture surface observations were conducted to identify the main failure modes. Microstructural and morphological analyses of 3D-printed INCONEL 718 samples were carried out using light optical microscopy (LOM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) textural analysis. Phase diagrams indicate expected phases such as γ-phase (FCC_A1), δ-phase (NbNi3_D0A), γ’’-phase (Ni3Ti_D024), Laves phase (C14_Laves), and γ’-phase (FCC_L12). Solution annealing was performed above 940 °C while aging treatment was done at temperatures below 800 °C to allow precipitation of γ’ and γ’’ phases. The δ phase also forms during aging. Fractographic examination of the tensile fractures indicated a predominantly quasi-ductile failure mechanism, with fine-sized dimples observed. In the XZ-oriented samples, the measured yield strength was 11 % higher compared to the Z-oriented samples and the yield strength was more than 12 % higher. The difference in mechanical properties between the Z orientation (Rp0.2 = 1284 MPa and Rm = 1429 MPa) and the XZ orientation (Rp0.2 = 1436 MPa and Rm = 1613 MPa) can be mainly attributed to the &lt; 101 &gt; texture in the XZ sample and its more equiaxed grain structure compared to the Z sample.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Failure Analysis

  • ISSN

    1350-6307

  • e-ISSN

    1873-1961

  • Svazek periodika

    166

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    31

  • Strana od-do

  • Kód UT WoS článku

    001330238300001

  • EID výsledku v databázi Scopus

    2-s2.0-85205260598