Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Determination of uniaxial and planar extensional viscosity using a Rosand high-pressure capillary rheometer

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F24%3A63580498" target="_blank" >RIV/70883521:28110/24:63580498 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Determination of uniaxial and planar extensional viscosity using a Rosand high-pressure capillary rheometer

  • Popis výsledku v původním jazyce

    Melt processability highly depends on the rheological properties of materials, such as shear- (ηs) and extensional (ηe) viscosity [1]. Using a high-pressure capillary rheometer and employing a long die and a zero-length (orifice) die, crucial data can be gathered. Applying the Cogswell method [2], measuring the entrance pressure drop (Pen), the ηe can be investigated. However, there is the possibility that material leaving the orifice die sticks to the wall [3,4] leading to overestimated (Pen) and incorrect (ηe). During processing, typically the uniaxial and planar (ηe) plays a critical role. Generation of pure planar flow is complicated and is considered unsuitable for routine use [5]. Based on the pioneering work of Zatloukal et al. [4,6], current designs of ROSAND dies have been optimized to create a new series of FreeFlow circular and rectangular orifice dies. These dies prevent the possibility of overestimating the (Pen), allowing precise determination of uniaxial and planar (ηe). In addition, FreeFlow dies enables a new way of evaluating extrudate swell, which is frequently missed or overestimated using conventional orifice dies. Measurements using the ROSAND high-pressure capillary rheometer can now provide in-depth studies of extrudate swell, uniaxial and planar (ηe).[1] Münstedt H., Elastic Behavior of Polymer Melts, 2019, pp. 1-2.[2] Cogswell F. N., Polym. Eng. Sci., 12(1), (1972) 64-73.[3] Aho J., Syrjälä S., Annual Transactions of the NRS, 14, 2006.[4] Zatloukal M., Musil J., Polym. Test. 28(8) (2009) 843-853.[5] Dealy J. M., Read D. J., Larson R. G., Structure and Rheology of Molten Polymers, 2nd Edition, 2018, pp. 443[6] Zatloukal M., Polymer 104 (2016) 258-267.

  • Název v anglickém jazyce

    Determination of uniaxial and planar extensional viscosity using a Rosand high-pressure capillary rheometer

  • Popis výsledku anglicky

    Melt processability highly depends on the rheological properties of materials, such as shear- (ηs) and extensional (ηe) viscosity [1]. Using a high-pressure capillary rheometer and employing a long die and a zero-length (orifice) die, crucial data can be gathered. Applying the Cogswell method [2], measuring the entrance pressure drop (Pen), the ηe can be investigated. However, there is the possibility that material leaving the orifice die sticks to the wall [3,4] leading to overestimated (Pen) and incorrect (ηe). During processing, typically the uniaxial and planar (ηe) plays a critical role. Generation of pure planar flow is complicated and is considered unsuitable for routine use [5]. Based on the pioneering work of Zatloukal et al. [4,6], current designs of ROSAND dies have been optimized to create a new series of FreeFlow circular and rectangular orifice dies. These dies prevent the possibility of overestimating the (Pen), allowing precise determination of uniaxial and planar (ηe). In addition, FreeFlow dies enables a new way of evaluating extrudate swell, which is frequently missed or overestimated using conventional orifice dies. Measurements using the ROSAND high-pressure capillary rheometer can now provide in-depth studies of extrudate swell, uniaxial and planar (ηe).[1] Münstedt H., Elastic Behavior of Polymer Melts, 2019, pp. 1-2.[2] Cogswell F. N., Polym. Eng. Sci., 12(1), (1972) 64-73.[3] Aho J., Syrjälä S., Annual Transactions of the NRS, 14, 2006.[4] Zatloukal M., Musil J., Polym. Test. 28(8) (2009) 843-853.[5] Dealy J. M., Read D. J., Larson R. G., Structure and Rheology of Molten Polymers, 2nd Edition, 2018, pp. 443[6] Zatloukal M., Polymer 104 (2016) 258-267.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10404 - Polymer science

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů