Best proxy to determine firm performance using financial ratios: A CHAID approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F22%3A63551658" target="_blank" >RIV/70883521:28120/22:63551658 - isvavai.cz</a>
Výsledek na webu
<a href="https://sciendo.com/article/10.2478/revecp-2022-0010" target="_blank" >https://sciendo.com/article/10.2478/revecp-2022-0010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/revecp-2022-0010" target="_blank" >10.2478/revecp-2022-0010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Best proxy to determine firm performance using financial ratios: A CHAID approach
Popis výsledku v původním jazyce
The main purpose of this study is to investigate the best predictor of firm performance among different proxies. A sample of 287 Czech firms was taken from automobile, construction, and anufacturing sectors. Panel data of the firms was acquired from the Albertina database for the time period from 2016 to 2020. Three different proxies of firm performance, return of assets (RoA), return of equity (RoE), and return of capital employed (RoCE) were used as dependent variables. Including three proxies of firm's performance, 16 financial ratios were measured based on the previous literature. A machine learning-based decision tree algorithm, Chi-squared Automatic Interaction Detector (CHAID), was deployed to gauge each proxy's efficacy and examine the best proxy of the firm performance. A partitioning rule of 70:30 was maintained, which implied that 70% of the dataset was used for training and the remaining 30% for testing. The results revealed that return on assets (RoA) was detected to be a robust proxy to predict financial performance among the targeted indicators. The results and the methodology will be useful for policy-makers, stakeholders, academics and managers to take trategic business decisions and forecast financial performance.
Název v anglickém jazyce
Best proxy to determine firm performance using financial ratios: A CHAID approach
Popis výsledku anglicky
The main purpose of this study is to investigate the best predictor of firm performance among different proxies. A sample of 287 Czech firms was taken from automobile, construction, and anufacturing sectors. Panel data of the firms was acquired from the Albertina database for the time period from 2016 to 2020. Three different proxies of firm performance, return of assets (RoA), return of equity (RoE), and return of capital employed (RoCE) were used as dependent variables. Including three proxies of firm's performance, 16 financial ratios were measured based on the previous literature. A machine learning-based decision tree algorithm, Chi-squared Automatic Interaction Detector (CHAID), was deployed to gauge each proxy's efficacy and examine the best proxy of the firm performance. A partitioning rule of 70:30 was maintained, which implied that 70% of the dataset was used for training and the remaining 30% for testing. The results revealed that return on assets (RoA) was detected to be a robust proxy to predict financial performance among the targeted indicators. The results and the methodology will be useful for policy-makers, stakeholders, academics and managers to take trategic business decisions and forecast financial performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Národohospodářský obzor - Review of Economic Perspectives
ISSN
1213-2446
e-ISSN
1804-1663
Svazek periodika
22
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
21
Strana od-do
"219 "- 239
Kód UT WoS článku
000862631900003
EID výsledku v databázi Scopus
2-s2.0-85139490029