Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Best proxy to determine firm performance using financial ratios: A CHAID approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F22%3A63551658" target="_blank" >RIV/70883521:28120/22:63551658 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://sciendo.com/article/10.2478/revecp-2022-0010" target="_blank" >https://sciendo.com/article/10.2478/revecp-2022-0010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/revecp-2022-0010" target="_blank" >10.2478/revecp-2022-0010</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Best proxy to determine firm performance using financial ratios: A CHAID approach

  • Popis výsledku v původním jazyce

    The main purpose of this study is to investigate the best predictor of firm performance among different proxies. A sample of 287 Czech firms was taken from automobile, construction, and anufacturing sectors. Panel data of the firms was acquired from the Albertina database for the time period from 2016 to 2020. Three different proxies of firm performance, return of assets (RoA), return of equity (RoE), and return of capital employed (RoCE) were used as dependent variables. Including three proxies of firm&apos;s performance, 16 financial ratios were measured based on the previous literature. A machine learning-based decision tree algorithm, Chi-squared Automatic Interaction Detector (CHAID), was deployed to gauge each proxy&apos;s efficacy and examine the best proxy of the firm performance. A partitioning rule of 70:30 was maintained, which implied that 70% of the dataset was used for training and the remaining 30% for testing. The results revealed that return on assets (RoA) was detected to be a robust proxy to predict financial performance among the targeted indicators. The results and the methodology will be useful for policy-makers, stakeholders, academics and managers to take trategic business decisions and forecast financial performance.

  • Název v anglickém jazyce

    Best proxy to determine firm performance using financial ratios: A CHAID approach

  • Popis výsledku anglicky

    The main purpose of this study is to investigate the best predictor of firm performance among different proxies. A sample of 287 Czech firms was taken from automobile, construction, and anufacturing sectors. Panel data of the firms was acquired from the Albertina database for the time period from 2016 to 2020. Three different proxies of firm performance, return of assets (RoA), return of equity (RoE), and return of capital employed (RoCE) were used as dependent variables. Including three proxies of firm&apos;s performance, 16 financial ratios were measured based on the previous literature. A machine learning-based decision tree algorithm, Chi-squared Automatic Interaction Detector (CHAID), was deployed to gauge each proxy&apos;s efficacy and examine the best proxy of the firm performance. A partitioning rule of 70:30 was maintained, which implied that 70% of the dataset was used for training and the remaining 30% for testing. The results revealed that return on assets (RoA) was detected to be a robust proxy to predict financial performance among the targeted indicators. The results and the methodology will be useful for policy-makers, stakeholders, academics and managers to take trategic business decisions and forecast financial performance.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50201 - Economic Theory

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Národohospodářský obzor - Review of Economic Perspectives

  • ISSN

    1213-2446

  • e-ISSN

    1804-1663

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    21

  • Strana od-do

    "219 "- 239

  • Kód UT WoS článku

    000862631900003

  • EID výsledku v databázi Scopus

    2-s2.0-85139490029