Assessing the effects of ammonia (NH3) as the secondary fuel on the combustion and emission characteristics with nano-additives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F23%3A63551338" target="_blank" >RIV/70883521:28120/23:63551338 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0016236122036559" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0016236122036559</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fuel.2022.126831" target="_blank" >10.1016/j.fuel.2022.126831</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessing the effects of ammonia (NH3) as the secondary fuel on the combustion and emission characteristics with nano-additives
Popis výsledku v původním jazyce
Ammonia is a promising alternative to replace the non-renewable fossil fuels. The present work offers the detailed evaluation of ammonia suitability in the diesel engine and how it is affecting the primary properties of the diesel engine. A series of tests was conducted on the test samples such as diesel, B20, B20N, B20A5 and B20A10 across various engine loading conditions. Two different ammonia energy ratios of 5 L/min and 10 L/min have been utilized. In addition to ammonia, the role of nanoparticles was analyzed and compared how far they can be competitive to the green ammonia fuel. 75 ppm of TiO2 nanoparticles was dispersed with Chlorella vulgaris microalgae biodiesel blends using ultrasonication. Ammonia was injected as the secondary fuel via air intake. Based on the results, adding ammonia in the diesel engine reduced the brake thermal efficiency of the engine. There was a drastic drop in the brake thermal efficiency that has been reported across various loads. Nevertheless, biodiesel blends with nanoparticles reported peak thermal efficiency due to the enhanced cetane number and calorific value of the fuel. On contrary, the brake specific fuel consumption of B10A and B20A was decreased compared to the other blends. As the ammonia concentration increased, both the peak cylinder pressure and heat release rates were higher. Due to the addition of ammonia, NOx emission was higher due to the higher cylinder temperature. On the other hand, the emissions of carbon dioxide, carbon monoxide and hydrocarbons were reduced for all cases compared to neat diesel.
Název v anglickém jazyce
Assessing the effects of ammonia (NH3) as the secondary fuel on the combustion and emission characteristics with nano-additives
Popis výsledku anglicky
Ammonia is a promising alternative to replace the non-renewable fossil fuels. The present work offers the detailed evaluation of ammonia suitability in the diesel engine and how it is affecting the primary properties of the diesel engine. A series of tests was conducted on the test samples such as diesel, B20, B20N, B20A5 and B20A10 across various engine loading conditions. Two different ammonia energy ratios of 5 L/min and 10 L/min have been utilized. In addition to ammonia, the role of nanoparticles was analyzed and compared how far they can be competitive to the green ammonia fuel. 75 ppm of TiO2 nanoparticles was dispersed with Chlorella vulgaris microalgae biodiesel blends using ultrasonication. Ammonia was injected as the secondary fuel via air intake. Based on the results, adding ammonia in the diesel engine reduced the brake thermal efficiency of the engine. There was a drastic drop in the brake thermal efficiency that has been reported across various loads. Nevertheless, biodiesel blends with nanoparticles reported peak thermal efficiency due to the enhanced cetane number and calorific value of the fuel. On contrary, the brake specific fuel consumption of B10A and B20A was decreased compared to the other blends. As the ammonia concentration increased, both the peak cylinder pressure and heat release rates were higher. Due to the addition of ammonia, NOx emission was higher due to the higher cylinder temperature. On the other hand, the emissions of carbon dioxide, carbon monoxide and hydrocarbons were reduced for all cases compared to neat diesel.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fuel
ISSN
0016-2361
e-ISSN
1873-7153
Svazek periodika
336
Číslo periodika v rámci svazku
336
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
000925068300001
EID výsledku v databázi Scopus
2-s2.0-85143615830