Data Analytics in Supply Chain Management: A State-of-the-Art Literature Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F24%3A63576078" target="_blank" >RIV/70883521:28120/24:63576078 - isvavai.cz</a>
Výsledek na webu
<a href="https://journal.oscm-forum.org/publication/article/data-analytics-in-supply-chain-management-a-state-of-the-art-literature-review" target="_blank" >https://journal.oscm-forum.org/publication/article/data-analytics-in-supply-chain-management-a-state-of-the-art-literature-review</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31387/oscm0560411" target="_blank" >10.31387/oscm0560411</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data Analytics in Supply Chain Management: A State-of-the-Art Literature Review
Popis výsledku v původním jazyce
In recent years, there has been a growing surge of interest in the application of data analytics (DA) within the realm of supply chain management (SCM), attracting attention from both practitioners and researchers. This paper presents a comprehensive examination of recent implementations of DA in SCM. Employing a systematic literature review (SLR), we conducted a meticulous analysis of over 354 papers. Building upon a prior SLR conducted in 2018, we identify contemporary areas where DA has been applied across various functions within the supply chain and scrutinize the DA models and techniques that have been employed. A comparison between past findings and the current literature reveals a notable upsurge in the utilization of DA across most SCM functions, with a particular emphasis on the prevalence of predictive analytics models in contemporary SCM applications. The findings of this paper offer a detailed insight into the specific DA models and techniques currently in use across various SCM functions. Additionally, a discernible increase in the adoption of mixed or hybrid DA models is observed. Fowever, several research gaps persist, including the need for more attention to real-time DA in SCM, the integration of publicly available data, and the application of DA to mitigate uncertainty in SCM. To address these areas and guide future research endeavors, the paper concludes by delineating six concrete research directions. These directions offer valuable avenues for further exploration in the field.
Název v anglickém jazyce
Data Analytics in Supply Chain Management: A State-of-the-Art Literature Review
Popis výsledku anglicky
In recent years, there has been a growing surge of interest in the application of data analytics (DA) within the realm of supply chain management (SCM), attracting attention from both practitioners and researchers. This paper presents a comprehensive examination of recent implementations of DA in SCM. Employing a systematic literature review (SLR), we conducted a meticulous analysis of over 354 papers. Building upon a prior SLR conducted in 2018, we identify contemporary areas where DA has been applied across various functions within the supply chain and scrutinize the DA models and techniques that have been employed. A comparison between past findings and the current literature reveals a notable upsurge in the utilization of DA across most SCM functions, with a particular emphasis on the prevalence of predictive analytics models in contemporary SCM applications. The findings of this paper offer a detailed insight into the specific DA models and techniques currently in use across various SCM functions. Additionally, a discernible increase in the adoption of mixed or hybrid DA models is observed. Fowever, several research gaps persist, including the need for more attention to real-time DA in SCM, the integration of publicly available data, and the application of DA to mitigate uncertainty in SCM. To address these areas and guide future research endeavors, the paper concludes by delineating six concrete research directions. These directions offer valuable avenues for further exploration in the field.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Operations and Supply Chain Management
ISSN
1979-3561
e-ISSN
2579-9363
Svazek periodika
17
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
ID - Indonéská republika
Počet stran výsledku
31
Strana od-do
1-31
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85192077842