Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Data Analytics in Supply Chain Management: A State-of-the-Art Literature Review

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F24%3A63576078" target="_blank" >RIV/70883521:28120/24:63576078 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journal.oscm-forum.org/publication/article/data-analytics-in-supply-chain-management-a-state-of-the-art-literature-review" target="_blank" >https://journal.oscm-forum.org/publication/article/data-analytics-in-supply-chain-management-a-state-of-the-art-literature-review</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.31387/oscm0560411" target="_blank" >10.31387/oscm0560411</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Data Analytics in Supply Chain Management: A State-of-the-Art Literature Review

  • Popis výsledku v původním jazyce

    In recent years, there has been a growing surge of interest in the application of data analytics (DA) within the realm of supply chain management (SCM), attracting attention from both practitioners and researchers. This paper presents a comprehensive examination of recent implementations of DA in SCM. Employing a systematic literature review (SLR), we conducted a meticulous analysis of over 354 papers. Building upon a prior SLR conducted in 2018, we identify contemporary areas where DA has been applied across various functions within the supply chain and scrutinize the DA models and techniques that have been employed. A comparison between past findings and the current literature reveals a notable upsurge in the utilization of DA across most SCM functions, with a particular emphasis on the prevalence of predictive analytics models in contemporary SCM applications. The findings of this paper offer a detailed insight into the specific DA models and techniques currently in use across various SCM functions. Additionally, a discernible increase in the adoption of mixed or hybrid DA models is observed. Fowever, several research gaps persist, including the need for more attention to real-time DA in SCM, the integration of publicly available data, and the application of DA to mitigate uncertainty in SCM. To address these areas and guide future research endeavors, the paper concludes by delineating six concrete research directions. These directions offer valuable avenues for further exploration in the field.

  • Název v anglickém jazyce

    Data Analytics in Supply Chain Management: A State-of-the-Art Literature Review

  • Popis výsledku anglicky

    In recent years, there has been a growing surge of interest in the application of data analytics (DA) within the realm of supply chain management (SCM), attracting attention from both practitioners and researchers. This paper presents a comprehensive examination of recent implementations of DA in SCM. Employing a systematic literature review (SLR), we conducted a meticulous analysis of over 354 papers. Building upon a prior SLR conducted in 2018, we identify contemporary areas where DA has been applied across various functions within the supply chain and scrutinize the DA models and techniques that have been employed. A comparison between past findings and the current literature reveals a notable upsurge in the utilization of DA across most SCM functions, with a particular emphasis on the prevalence of predictive analytics models in contemporary SCM applications. The findings of this paper offer a detailed insight into the specific DA models and techniques currently in use across various SCM functions. Additionally, a discernible increase in the adoption of mixed or hybrid DA models is observed. Fowever, several research gaps persist, including the need for more attention to real-time DA in SCM, the integration of publicly available data, and the application of DA to mitigate uncertainty in SCM. To address these areas and guide future research endeavors, the paper concludes by delineating six concrete research directions. These directions offer valuable avenues for further exploration in the field.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Operations and Supply Chain Management

  • ISSN

    1979-3561

  • e-ISSN

    2579-9363

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    ID - Indonéská republika

  • Počet stran výsledku

    31

  • Strana od-do

    1-31

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85192077842