Pseudo Neural Networks for Iris Data Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F14%3A43871643" target="_blank" >RIV/70883521:28140/14:43871643 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.7148/2014-0387" target="_blank" >http://dx.doi.org/10.7148/2014-0387</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7148/2014-0387" target="_blank" >10.7148/2014-0387</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pseudo Neural Networks for Iris Data Classification
Popis výsledku v původním jazyce
This research deals with a novel approach to classification. Iris data was used for the experiments. Classical artificial neural networks, where a relation between inputs and outputs is based on the mathematical transfer functions and optimized numericalweights, was an inspiration for this work. Artificial neural networks need to optimize weights, but the structure and transfer functions are usually set up before the training. The proposed method utilizes the symbolic regression for synthesis of a whole structure, i.e. the relation between inputs and output(s). This paper differs from the previous approach where only one output pseudo node was used even for more classes. In this case, there were synthesized more node output equations as in classical artificial neural networks. The benchmark was iris data as in previous research. For experimentation, Differential Evolution (DE) for the main procedure and also for meta-evolution version of analytic programming (AP) was used.
Název v anglickém jazyce
Pseudo Neural Networks for Iris Data Classification
Popis výsledku anglicky
This research deals with a novel approach to classification. Iris data was used for the experiments. Classical artificial neural networks, where a relation between inputs and outputs is based on the mathematical transfer functions and optimized numericalweights, was an inspiration for this work. Artificial neural networks need to optimize weights, but the structure and transfer functions are usually set up before the training. The proposed method utilizes the symbolic regression for synthesis of a whole structure, i.e. the relation between inputs and output(s). This paper differs from the previous approach where only one output pseudo node was used even for more classes. In this case, there were synthesized more node output equations as in classical artificial neural networks. The benchmark was iris data as in previous research. For experimentation, Differential Evolution (DE) for the main procedure and also for meta-evolution version of analytic programming (AP) was used.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED2.1.00%2F03.0089" target="_blank" >ED2.1.00/03.0089: Centrum bezpečnostních, informačních a pokročilých technologií (CEBIA-Tech)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
28th European Conference on Modelling and Simulation
ISBN
978-0-9564944-8-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
387-392
Název nakladatele
ECMS
Místo vydání
Nottingham
Místo konání akce
Brescia
Datum konání akce
27. 5. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—