Alternative Approach to Optimization in Model Predictive Control Using Hill Climbing Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F15%3A43873819" target="_blank" >RIV/70883521:28140/15:43873819 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Alternative Approach to Optimization in Model Predictive Control Using Hill Climbing Algorithm
Popis výsledku v původním jazyce
The term predictive control designates a class of control methods suitable for control of various kinds of systems. One of the major advantages of predictive control is its ability to do on-line constraints handling in a systematic way. The predictive control is based on the prediction of a system behavior using a model. Based on this prediction, it is possible to optimize the systems behavior by utilization of a cost function. Each of control variables may be limited thus creating a specific subspace within a cost function. This problem is computationally complex and must be solved in each sampling period by optimization algorithms. Various kinds of algorithms may be applied. This contribution is focused on an alternative approach to optimization by implementation of Hill Climbing algorithm. The motivation for this concept is an effort to find algorithms suitable for reduction of computational expenses. These algorithms might be applied for control of systems with faster dynamics.
Název v anglickém jazyce
Alternative Approach to Optimization in Model Predictive Control Using Hill Climbing Algorithm
Popis výsledku anglicky
The term predictive control designates a class of control methods suitable for control of various kinds of systems. One of the major advantages of predictive control is its ability to do on-line constraints handling in a systematic way. The predictive control is based on the prediction of a system behavior using a model. Based on this prediction, it is possible to optimize the systems behavior by utilization of a cost function. Each of control variables may be limited thus creating a specific subspace within a cost function. This problem is computationally complex and must be solved in each sampling period by optimization algorithms. Various kinds of algorithms may be applied. This contribution is focused on an alternative approach to optimization by implementation of Hill Climbing algorithm. The motivation for this concept is an effort to find algorithms suitable for reduction of computational expenses. These algorithms might be applied for control of systems with faster dynamics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Annals of DAAAM International for 2015, Volume 26
ISBN
978-3-902734-06-8
ISSN
2304-1382
e-ISSN
—
Počet stran výsledku
10
Strana od-do
"Nestránkováno"
Název nakladatele
DAAAM International Vienna
Místo vydání
Vienna
Místo konání akce
Zadar
Datum konání akce
21. 10. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—