Prediction of raw material batches for the production of clinker by means of artificial neural networks-Analysis of behaviour
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F15%3A43874009" target="_blank" >RIV/70883521:28140/15:43874009 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.scs-europe.net/dlib/2015/2015-0570.htm" target="_blank" >http://www.scs-europe.net/dlib/2015/2015-0570.htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7148/2015-0570" target="_blank" >10.7148/2015-0570</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of raw material batches for the production of clinker by means of artificial neural networks-Analysis of behaviour
Popis výsledku v původním jazyce
This research deals with the analysis of the behaviour of artificial neural nets for prediction of raw material batches for the production of clinker. During the production several oxides that are present in raw materials in quarries has to be extractedfor homogenization of the mixture suitable for clinker production. There is some delay between the measurement of the mixture and the material which is send from quarry. It is necessary to "send" precise chemical composition to ensure a good quality of clinker and resulting product - cement. ANN are suitable for such kind of time-independent prediction. The results show that not all oxides are necessary to use for the prediction of one oxide. The ANN were designed into several nets with one input similarly as pseudo neural networks are able to work. The results will be used for the purpose of further research of pseudo neural nets which currently serve only as classifiers.
Název v anglickém jazyce
Prediction of raw material batches for the production of clinker by means of artificial neural networks-Analysis of behaviour
Popis výsledku anglicky
This research deals with the analysis of the behaviour of artificial neural nets for prediction of raw material batches for the production of clinker. During the production several oxides that are present in raw materials in quarries has to be extractedfor homogenization of the mixture suitable for clinker production. There is some delay between the measurement of the mixture and the material which is send from quarry. It is necessary to "send" precise chemical composition to ensure a good quality of clinker and resulting product - cement. ANN are suitable for such kind of time-independent prediction. The results show that not all oxides are necessary to use for the prediction of one oxide. The ANN were designed into several nets with one input similarly as pseudo neural networks are able to work. The results will be used for the purpose of further research of pseudo neural nets which currently serve only as classifiers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 29th European Conference on Modelling and Simulation, ECMS 2015
ISBN
978-0-9932440-0-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
570-575
Název nakladatele
ECMS - European Council for Modelling and Simulation
Místo vydání
Albena (Varna)
Místo konání akce
Albena (Varna)
Datum konání akce
26. 5. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—