Differential evolution driven analytic programming for prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F17%3A63517239" target="_blank" >RIV/70883521:28140/17:63517239 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/17:10238520 RIV/61989100:27740/17:10238520
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-59060-8_61" target="_blank" >http://dx.doi.org/10.1007/978-3-319-59060-8_61</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-59060-8_61" target="_blank" >10.1007/978-3-319-59060-8_61</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential evolution driven analytic programming for prediction
Popis výsledku v původním jazyce
This research deals with the hybridization of symbolic regression open framework, which is Analytical Programming (AP) and Differential Evolution (DE) algorithm in the task of time series prediction. This paper provides a closer insight into applicability and performance of connection between AP and different strategies of DE. AP can be considered as powerful open framework for symbolic regression thanks to its applicability in any programming language with arbitrary driving evolutionary/swarm based algorithm. Thus, the motivation behind this research, is to explore and investigate the differences in performance of AP driven by basic canonical strategies of DE as well as by the state of the art strategy, which is Success-History based Adaptive Differential Evolution (SHADE). Simple experiment has been carried out here with the time series consisting of 300 data-points of GBP/USD exchange rate, where the first 2/3 of data were used for regression process and the last 1/3 of the data were used as a verification for prediction process. The differences between regression/prediction models synthesized by means of AP as a direct consequences of different DE strategies performances are briefly discussed within conclusion section of this paper.
Název v anglickém jazyce
Differential evolution driven analytic programming for prediction
Popis výsledku anglicky
This research deals with the hybridization of symbolic regression open framework, which is Analytical Programming (AP) and Differential Evolution (DE) algorithm in the task of time series prediction. This paper provides a closer insight into applicability and performance of connection between AP and different strategies of DE. AP can be considered as powerful open framework for symbolic regression thanks to its applicability in any programming language with arbitrary driving evolutionary/swarm based algorithm. Thus, the motivation behind this research, is to explore and investigate the differences in performance of AP driven by basic canonical strategies of DE as well as by the state of the art strategy, which is Success-History based Adaptive Differential Evolution (SHADE). Simple experiment has been carried out here with the time series consisting of 300 data-points of GBP/USD exchange rate, where the first 2/3 of data were used for regression process and the last 1/3 of the data were used as a verification for prediction process. The differences between regression/prediction models synthesized by means of AP as a direct consequences of different DE strategies performances are briefly discussed within conclusion section of this paper.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-319-59059-2
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
12
Strana od-do
676-687
Název nakladatele
Springer-Verlag Berlin
Místo vydání
Heidelberg
Místo konání akce
Zakopane
Datum konání akce
11. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426206100061