Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Different Approaches for constant estimation in analytic programming

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F17%3A63517335" target="_blank" >RIV/70883521:28140/17:63517335 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/70883521:28120/17:63517335

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Different Approaches for constant estimation in analytic programming

  • Popis výsledku v původním jazyce

    This research deals with different approaches for constant estimation in analytic programming (AP). AP is a tool for symbolic regression tasks which enables to synthesise an analytical solution based on the required behaviour of the system. Some tasks do not need any constant estimation - AP is used in its basic version without any constant estimation handling. Compared to this, cases like data approximation need constants (coefficients) which are essential for the process of precise solution synthesis. This paper offers another strategy to already known and used by the AP from the very beginning and approaches published recently in 2016. This paper compares these procedures and the discussion also includes nonlinear fitting and metaevolutionary approach. As the main evolutionary algorithm, a differential algorithm (de/rand/1/bin) for the main process of AP is used.

  • Název v anglickém jazyce

    Different Approaches for constant estimation in analytic programming

  • Popis výsledku anglicky

    This research deals with different approaches for constant estimation in analytic programming (AP). AP is a tool for symbolic regression tasks which enables to synthesise an analytical solution based on the required behaviour of the system. Some tasks do not need any constant estimation - AP is used in its basic version without any constant estimation handling. Compared to this, cases like data approximation need constants (coefficients) which are essential for the process of precise solution synthesis. This paper offers another strategy to already known and used by the AP from the very beginning and approaches published recently in 2016. This paper compares these procedures and the discussion also includes nonlinear fitting and metaevolutionary approach. As the main evolutionary algorithm, a differential algorithm (de/rand/1/bin) for the main process of AP is used.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings - 31st European Conference on Modelling and Simulation, ECMS 2017

  • ISBN

    978-099324404-9

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    7

  • Strana od-do

    326-332

  • Název nakladatele

    European Council for Modelling and Simulation

  • Místo vydání

    Madrid

  • Místo konání akce

    Budapešť

  • Datum konání akce

    23. 5. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku