Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis and selection of a regression model for the Use Case Points method using a stepwise approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F17%3A63517634" target="_blank" >RIV/70883521:28140/17:63517634 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S016412121630231X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S016412121630231X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jss.2016.11.029" target="_blank" >10.1016/j.jss.2016.11.029</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis and selection of a regression model for the Use Case Points method using a stepwise approach

  • Popis výsledku v původním jazyce

    This study investigates the significance of use case points (UCP) variables and the influence of the complexity of multiple linear regression models on software size estimation and accuracy. Stepwise multiple linear regression models and residual analysis were used to analyse the impact of model complexity. The impact of each variable was studied using correlation analysis. The estimated size of software depends mainly on the values of the weights of unadjusted UCP, which represent a number of use cases. Moreover, all other variables (unadjusted actors&apos; weights, technical complexity factors, and environmental complexity factors) from the UCP method also have an impact on software size and therefore cannot be omitted from the regression model. The best performing model (Model D) contains an intercept, linear terms, and squared terms. The results of several evaluation measures show that this model&apos;s estimation ability is better than that of the other models tested. Model D also performs better when compared to the UCP model, whose Sum of Squared Error was 268,620 points on Dataset 1 and 87,055 on Dataset 2. Model D achieved a greater than 90% reduction in the Sum of Squared Errors compared to the Use Case Points method on Dataset 1 and a greater than 91% reduction on Dataset 2. The medians of the Sum of Squared Errors for both methods are significantly different at the 95% confidence level (p &lt; 0.01), while the medians for Model D (312 and 37.26) are lower than Use Case Points (3134 and 3712) on Datasets 1 and 2, respectively.

  • Název v anglickém jazyce

    Analysis and selection of a regression model for the Use Case Points method using a stepwise approach

  • Popis výsledku anglicky

    This study investigates the significance of use case points (UCP) variables and the influence of the complexity of multiple linear regression models on software size estimation and accuracy. Stepwise multiple linear regression models and residual analysis were used to analyse the impact of model complexity. The impact of each variable was studied using correlation analysis. The estimated size of software depends mainly on the values of the weights of unadjusted UCP, which represent a number of use cases. Moreover, all other variables (unadjusted actors&apos; weights, technical complexity factors, and environmental complexity factors) from the UCP method also have an impact on software size and therefore cannot be omitted from the regression model. The best performing model (Model D) contains an intercept, linear terms, and squared terms. The results of several evaluation measures show that this model&apos;s estimation ability is better than that of the other models tested. Model D also performs better when compared to the UCP model, whose Sum of Squared Error was 268,620 points on Dataset 1 and 87,055 on Dataset 2. Model D achieved a greater than 90% reduction in the Sum of Squared Errors compared to the Use Case Points method on Dataset 1 and a greater than 91% reduction on Dataset 2. The medians of the Sum of Squared Errors for both methods are significantly different at the 95% confidence level (p &lt; 0.01), while the medians for Model D (312 and 37.26) are lower than Use Case Points (3134 and 3712) on Datasets 1 and 2, respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF SYSTEMS AND SOFTWARE

  • ISSN

    0164-1212

  • e-ISSN

  • Svazek periodika

    125

  • Číslo periodika v rámci svazku

    neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    "nestrankovano"

  • Kód UT WoS článku

    000395359500001

  • EID výsledku v databázi Scopus

    2-s2.0-85000774224