Robust Stability of Fractional-Order Linear Time-Invariant Systems: Parametric versus Unstructured Uncertainty Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F18%3A63520162" target="_blank" >RIV/70883521:28140/18:63520162 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.hindawi.com/journals/complexity/2018/8073481/" target="_blank" >https://www.hindawi.com/journals/complexity/2018/8073481/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2018/8073481" target="_blank" >10.1155/2018/8073481</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Stability of Fractional-Order Linear Time-Invariant Systems: Parametric versus Unstructured Uncertainty Models
Popis výsledku v původním jazyce
The main aim of this paper is to present and compare three approaches to uncertainty modeling and robust stability analysis for fractional-order (FO) linear time-invariant (LTI) single-input single-output (SISO) uncertain systems. The investigated objects are described either via FO models with parametric uncertainty, by means of FO unstructured multiplicative uncertainty models, or through FO unstructured additive uncertainty models, while the unstructured models are constructed on the basis of appropriate selection of a nominal plant and a weight function. Robust stability investigation for systems with parametric uncertainty uses the combination of plotting the value sets and application of the zero exclusion condition. For the case of systems with unstructured uncertainty, the graphical interpretation of utilized robust stability test is based mainly on the envelopes of the Nyquist diagrams. The theoretical foundations are followed by two extensive illustrative examples where the plant models are created, the robust stability of feedback control loops is analyzed and obtained results are discussed.
Název v anglickém jazyce
Robust Stability of Fractional-Order Linear Time-Invariant Systems: Parametric versus Unstructured Uncertainty Models
Popis výsledku anglicky
The main aim of this paper is to present and compare three approaches to uncertainty modeling and robust stability analysis for fractional-order (FO) linear time-invariant (LTI) single-input single-output (SISO) uncertain systems. The investigated objects are described either via FO models with parametric uncertainty, by means of FO unstructured multiplicative uncertainty models, or through FO unstructured additive uncertainty models, while the unstructured models are constructed on the basis of appropriate selection of a nominal plant and a weight function. Robust stability investigation for systems with parametric uncertainty uses the combination of plotting the value sets and application of the zero exclusion condition. For the case of systems with unstructured uncertainty, the graphical interpretation of utilized robust stability test is based mainly on the envelopes of the Nyquist diagrams. The theoretical foundations are followed by two extensive illustrative examples where the plant models are created, the robust stability of feedback control loops is analyzed and obtained results are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPLEXITY
ISSN
1076-2787
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000443631700001
EID výsledku v databázi Scopus
2-s2.0-85062723014