Evaluation of Data Preprocessing Techniques for Anomaly Detection Systems in Industrial Control System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F19%3A63523743" target="_blank" >RIV/70883521:28140/19:63523743 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2019/101.pdf" target="_blank" >https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2019/101.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2507/30th.daaam.proceedings.101" target="_blank" >10.2507/30th.daaam.proceedings.101</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of Data Preprocessing Techniques for Anomaly Detection Systems in Industrial Control System
Popis výsledku v původním jazyce
The critical infrastructure can be defined as main cornerstone of modern society. Therefore, the cyber protection of critical systems like industrial control systems is vital for every modern state. However, conventional techniques are often ineffective to protect these systems. Thus, machine learning is an exceptional way to ensure cyber security in the case of critical infrastructure. The machine learning can process high dimension datasets with thousands of record in real-time. However, these datasets have to be in a proper format. The data preprocessing is a crucial stage in machine learning and can negatively influence final results. We introduce a comprehensive comparison of the main data preprocessing techniques in the relation of the network anomaly detection system. Moreover, the preprocessing of continuous datasets is considered as the subject of the research The neural network autoencoder is considered as an anomaly detection algorithm which is used to evaluate proposed solutions.
Název v anglickém jazyce
Evaluation of Data Preprocessing Techniques for Anomaly Detection Systems in Industrial Control System
Popis výsledku anglicky
The critical infrastructure can be defined as main cornerstone of modern society. Therefore, the cyber protection of critical systems like industrial control systems is vital for every modern state. However, conventional techniques are often ineffective to protect these systems. Thus, machine learning is an exceptional way to ensure cyber security in the case of critical infrastructure. The machine learning can process high dimension datasets with thousands of record in real-time. However, these datasets have to be in a proper format. The data preprocessing is a crucial stage in machine learning and can negatively influence final results. We introduce a comprehensive comparison of the main data preprocessing techniques in the relation of the network anomaly detection system. Moreover, the preprocessing of continuous datasets is considered as the subject of the research The neural network autoencoder is considered as an anomaly detection algorithm which is used to evaluate proposed solutions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20172019054" target="_blank" >VI20172019054: Analytický programový modul pro hodnocení odolnosti v reálném čase z hlediska konvergované bezpečnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Annals of DAAAM and Proceedings of the International DAAAM Symposium
ISBN
—
ISSN
17269679
e-ISSN
—
Počet stran výsledku
8
Strana od-do
738-745
Název nakladatele
Danube Adria Association for Automation and Manufacturing ( DAAAM )
Místo vydání
Vídeň
Místo konání akce
Zadar
Datum konání akce
23. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—