Unifying Charge Generation, Recombination, and Extraction in Low-Offset Non-Fullerene Acceptor Organic Solar Cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63524996" target="_blank" >RIV/70883521:28140/20:63524996 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Faenm.202001203&file=aenm202001203-sup-0001-SuppMat.pdf" target="_blank" >https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Faenm.202001203&file=aenm202001203-sup-0001-SuppMat.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/aenm.202001203" target="_blank" >10.1002/aenm.202001203</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unifying Charge Generation, Recombination, and Extraction in Low-Offset Non-Fullerene Acceptor Organic Solar Cells
Popis výsledku v původním jazyce
Even though significant breakthroughs with over 18% power conversion efficiencies (PCEs) in polymer:non-fullerene acceptor (NFA) bulk heterojunction organic solar cells (OSCs) have been achieved, not many studies have focused on acquiring a comprehensive understanding of the underlying mechanisms governing these systems. This is because it can be challenging to delineate device photophysics in polymer:NFA blends comprehensively, and even more complicated to trace the origins of the differences in device photophysics to the subtle differences in energetics and morphology. Here, a systematic study of a series of polymer:NFA blends is conducted to unify and correlate the cumulative effects of i) voltage losses, ii) charge generation efficiencies, iii) non-geminate recombination and extraction dynamics, and iv) nuanced morphological differences with device performances. Most importantly, a deconvolution of the major loss processes in polymer:NFA blends and their connections to the complex BHJ morphology and energetics are established. An extension to advanced morphological techniques, such as solid-state NMR (for atomic level insights on the local ordering and donor:acceptor ππ interactions) and resonant soft X-ray scattering (for donor and acceptor interfacial area and domain spacings), provide detailed insights on how efficient charge generation, transport, and extraction processes can outweigh increased voltage losses to yield high PCEs.
Název v anglickém jazyce
Unifying Charge Generation, Recombination, and Extraction in Low-Offset Non-Fullerene Acceptor Organic Solar Cells
Popis výsledku anglicky
Even though significant breakthroughs with over 18% power conversion efficiencies (PCEs) in polymer:non-fullerene acceptor (NFA) bulk heterojunction organic solar cells (OSCs) have been achieved, not many studies have focused on acquiring a comprehensive understanding of the underlying mechanisms governing these systems. This is because it can be challenging to delineate device photophysics in polymer:NFA blends comprehensively, and even more complicated to trace the origins of the differences in device photophysics to the subtle differences in energetics and morphology. Here, a systematic study of a series of polymer:NFA blends is conducted to unify and correlate the cumulative effects of i) voltage losses, ii) charge generation efficiencies, iii) non-geminate recombination and extraction dynamics, and iv) nuanced morphological differences with device performances. Most importantly, a deconvolution of the major loss processes in polymer:NFA blends and their connections to the complex BHJ morphology and energetics are established. An extension to advanced morphological techniques, such as solid-state NMR (for atomic level insights on the local ordering and donor:acceptor ππ interactions) and resonant soft X-ray scattering (for donor and acceptor interfacial area and domain spacings), provide detailed insights on how efficient charge generation, transport, and extraction processes can outweigh increased voltage losses to yield high PCEs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCED ENERGY MATERIALS
ISSN
1614-6832
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
29
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
"2001203 (1 of 15)"
Kód UT WoS článku
000540877000001
EID výsledku v databázi Scopus
2-s2.0-85087158288