Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparative study of week-ahead forecasting of daily gas consumption in buildings using regression ARMA/SARMA and genetic-algorithm-optimized regression wavelet neural network models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63526715" target="_blank" >RIV/70883521:28140/21:63526715 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://reader.elsevier.com/reader/sd/pii/S2352710220335877?token=98A9B56C2553C0EECDDD32ED6E5BBF7940B9FE725ACF3431E4718A3376818F5D3C20502B660CE83C6279C4331438165B" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S2352710220335877?token=98A9B56C2553C0EECDDD32ED6E5BBF7940B9FE725ACF3431E4718A3376818F5D3C20502B660CE83C6279C4331438165B</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jobe.2020.101955" target="_blank" >10.1016/j.jobe.2020.101955</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparative study of week-ahead forecasting of daily gas consumption in buildings using regression ARMA/SARMA and genetic-algorithm-optimized regression wavelet neural network models

  • Popis výsledku v původním jazyce

    Forecasting energy consumption in buildings is crucial for achieving effective energy management as well as reducing environmental impacts. With the availability of large amounts of relevant data through smart metering, gas consumption forecasting is becoming an integral part of smart building design so that these requirements are met. In this study, we investigate week-ahead forecasting of daily gas consumption in three types of buildings characterized by different gas consumption profiles during a five-year period. As gas consumption in buildings is highly correlated with the average outdoor temperature, regression models with additional residual modeling are used for forecasting. However, conventional regression models with autoregressive moving averages (ARMA) errors (regARMA) perform poorly when the temperature forecasts are inaccurate. To address this, a new forecasting model termed genetic-algorithm-optimized regression wavelet neural network (GA-optimized regWANN) is proposed. It uses the wavelet decomposition of the residuals of temperature regression time-series, which are modeled by multiple nonlinear autoregressive (NAR) models based on sigmoid neural networks. The appropriate delays in the regression vectors of the NAR models are selected using a binary GA. Compared with regARMA and seasonal regARMA, the GA-optimized regWANN model achieved in the three buildings a reduction of 22.6%, 17.7%, and 57% in the mean absolute error (MAE) values in ex post forecasting with recorded temperatures, and a 52.5%, 27%, and 43.6% reduction in the MAE values in ex ante forecasting with week-ahead forecasted temperatures, even under conditions of relatively significant errors in the forecasted temperature. © 2020 Elsevier Ltd

  • Název v anglickém jazyce

    Comparative study of week-ahead forecasting of daily gas consumption in buildings using regression ARMA/SARMA and genetic-algorithm-optimized regression wavelet neural network models

  • Popis výsledku anglicky

    Forecasting energy consumption in buildings is crucial for achieving effective energy management as well as reducing environmental impacts. With the availability of large amounts of relevant data through smart metering, gas consumption forecasting is becoming an integral part of smart building design so that these requirements are met. In this study, we investigate week-ahead forecasting of daily gas consumption in three types of buildings characterized by different gas consumption profiles during a five-year period. As gas consumption in buildings is highly correlated with the average outdoor temperature, regression models with additional residual modeling are used for forecasting. However, conventional regression models with autoregressive moving averages (ARMA) errors (regARMA) perform poorly when the temperature forecasts are inaccurate. To address this, a new forecasting model termed genetic-algorithm-optimized regression wavelet neural network (GA-optimized regWANN) is proposed. It uses the wavelet decomposition of the residuals of temperature regression time-series, which are modeled by multiple nonlinear autoregressive (NAR) models based on sigmoid neural networks. The appropriate delays in the regression vectors of the NAR models are selected using a binary GA. Compared with regARMA and seasonal regARMA, the GA-optimized regWANN model achieved in the three buildings a reduction of 22.6%, 17.7%, and 57% in the mean absolute error (MAE) values in ex post forecasting with recorded temperatures, and a 52.5%, 27%, and 43.6% reduction in the MAE values in ex ante forecasting with week-ahead forecasted temperatures, even under conditions of relatively significant errors in the forecasted temperature. © 2020 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FV20419" target="_blank" >FV20419: Inteligentní systém pro pokročilé třídění lesních sazenic</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Building Engineering

  • ISSN

    2352-7102

  • e-ISSN

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    neuvedeno

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    20

  • Strana od-do

  • Kód UT WoS článku

    000608431400005

  • EID výsledku v databázi Scopus

    2-s2.0-85096400935