Mining Top-K High Utility Itemsets Using Bio-Inspired Algorithms with a Diversity within Population Framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63559518" target="_blank" >RIV/70883521:28140/22:63559518 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/RIVF55975.2022.10013891" target="_blank" >http://dx.doi.org/10.1109/RIVF55975.2022.10013891</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/RIVF55975.2022.10013891" target="_blank" >10.1109/RIVF55975.2022.10013891</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mining Top-K High Utility Itemsets Using Bio-Inspired Algorithms with a Diversity within Population Framework
Popis výsledku v původním jazyce
High-utility itemset mining (HUIM), as a necessary data mining task, has paid the attention of many researchers. It includes numerous applications in various arears. Recently, a method, which improved the memory usage and runtime for HUIs mining, was proposed, is called TKO-BPSO. It helps to automatically increase the border thresholds and might considerably reduce the combinational problem for pruning the search space effectively. However, the idea only works to maintain the current optimal values in the next populations, leading to the variety within populations is limited. To handle this problem, we propose a new bio-inspired algorithm-based HUIM framework to explore HUIs, namely TKO-HUIMF-PSO (Top-K high utility itemset mining in One phase based on a HUIM Framework of Particle Swarm Optimization). The main idea of TKO-HUIMF-PSO adapts the standard roadmap of bio-inspired algorithms by applying roulette wheel selection to all the discovered HUIs to determine the target values of the next population. Consequently, it improves the diversity within populations. Significant experiments conducted on publicly available several real and synthetic datasets delineate that the proposed algorithm is efficient and effective in terms of runtime and memory usage.
Název v anglickém jazyce
Mining Top-K High Utility Itemsets Using Bio-Inspired Algorithms with a Diversity within Population Framework
Popis výsledku anglicky
High-utility itemset mining (HUIM), as a necessary data mining task, has paid the attention of many researchers. It includes numerous applications in various arears. Recently, a method, which improved the memory usage and runtime for HUIs mining, was proposed, is called TKO-BPSO. It helps to automatically increase the border thresholds and might considerably reduce the combinational problem for pruning the search space effectively. However, the idea only works to maintain the current optimal values in the next populations, leading to the variety within populations is limited. To handle this problem, we propose a new bio-inspired algorithm-based HUIM framework to explore HUIs, namely TKO-HUIMF-PSO (Top-K high utility itemset mining in One phase based on a HUIM Framework of Particle Swarm Optimization). The main idea of TKO-HUIMF-PSO adapts the standard roadmap of bio-inspired algorithms by applying roulette wheel selection to all the discovered HUIs to determine the target values of the next population. Consequently, it improves the diversity within populations. Significant experiments conducted on publicly available several real and synthetic datasets delineate that the proposed algorithm is efficient and effective in terms of runtime and memory usage.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 2022 RIVF International Conference on Computing and Communication Technologies, RIVF 2022
ISBN
978-1-66546-166-5
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Piscataway, New Jersey
Místo konání akce
Ho Chi Minh City
Datum konání akce
20. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—