Comparison of Stabilization with P/I-Delayed Controllers for Second-Order Systems Using Built-In MATLAB Heuristic Optimization Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63555838" target="_blank" >RIV/70883521:28140/23:63555838 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-21435-6_55" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21435-6_55</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-21435-6_55" target="_blank" >10.1007/978-3-031-21435-6_55</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Stabilization with P/I-Delayed Controllers for Second-Order Systems Using Built-In MATLAB Heuristic Optimization Methods
Popis výsledku v původním jazyce
In control theory, optimization is a process that makes some system behavior as likelihood, functional, or practical as possible (depending on the design requirements). From a mathematical point of view, optimization is a way to find the minimum or maximum of the mathematical function by which the system is described. Moreover, if there is a time delay in the feedback loops inside a controlled system, the system has an infinite spectrum – infinitely many roots (poles); this degrades the control's quality, especially in terms of stability, robustness, and oscillation response. For these reasons, it is necessary to optimize the system transient response. This paper will compare selected heuristic methods of optimization of linear-time invariant (LTI) systems with time delay in an integral part of the P/I-delayed controller. Some examples are chosen as benchmarks to verify the effectiveness of the optimization. In future research, we would like to focus on implementing selected modern optimization algorithms for solving non-smooth, non-convex, and non-Lipschitz optimization problems.
Název v anglickém jazyce
Comparison of Stabilization with P/I-Delayed Controllers for Second-Order Systems Using Built-In MATLAB Heuristic Optimization Methods
Popis výsledku anglicky
In control theory, optimization is a process that makes some system behavior as likelihood, functional, or practical as possible (depending on the design requirements). From a mathematical point of view, optimization is a way to find the minimum or maximum of the mathematical function by which the system is described. Moreover, if there is a time delay in the feedback loops inside a controlled system, the system has an infinite spectrum – infinitely many roots (poles); this degrades the control's quality, especially in terms of stability, robustness, and oscillation response. For these reasons, it is necessary to optimize the system transient response. This paper will compare selected heuristic methods of optimization of linear-time invariant (LTI) systems with time delay in an integral part of the P/I-delayed controller. Some examples are chosen as benchmarks to verify the effectiveness of the optimization. In future research, we would like to focus on implementing selected modern optimization algorithms for solving non-smooth, non-convex, and non-Lipschitz optimization problems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-3-031-21434-9
ISSN
23673370
e-ISSN
2367-3389
Počet stran výsledku
12
Strana od-do
"652–662"
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
on-line
Datum konání akce
10. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—