Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evolutionary Optimized 3D WiFi Antennas Manufactured via Laser Powder Bed Fusion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63564678" target="_blank" >RIV/70883521:28140/23:63564678 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10302267" target="_blank" >https://ieeexplore.ieee.org/document/10302267</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3328852" target="_blank" >10.1109/ACCESS.2023.3328852</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evolutionary Optimized 3D WiFi Antennas Manufactured via Laser Powder Bed Fusion

  • Popis výsledku v původním jazyce

    The swift and automated design of antennas remains a challenging aspect in research dueto the specific design needs for individual applications. Alterations in resonance frequency or boundaryconditions necessitate time-consuming re-designs. Though the application of evolutionary optimization andgenerative methods in general to antenna design has seen success, it has been mostly restricted to twodimensional structures. In this work, we present an approach for designing three-dimensional antennas usinga genetic algorithm coupled with a region-growing algorithm - to ensure manufacturability - implementedin Matlab manufactured via laser powder bed fusion (LPBF). As a simulation tool for optimization CSTis used. The antenna has been optimized in a completely automated manner and was produced using themetal 3D printing technology LPBF and aluminium based AlSi10Mg powder. The presented concept, whichbuilds upon previous two-dimensional techniques, allows for significant flexibility in design, adapting tochanging boundary conditions, and avoiding the geometric restrictions seen in prior methods. The optimizedantenna has a size of 3.01 cm × 3.43 cm × 1.67 cm and was measured in an anechoic chamber. According tomeasurements a minimum reflection coefficient of −19.95 dB at 2.462 GHz and a bandwidth of 308.8 MHzare observed. CST simulation results predict an efficiency of 98.91 % and the maximum antenna gain ismeasured at 2.45 GHz to be 3.27 dBi. Simulations made with CST and Ansys HFSS and measurements arein excellent agreement with a deviation of the resonance frequency of only 0.13 %, thus further establishinggenetic algorithms as a highly viable option for the design of novel antenna structures.

  • Název v anglickém jazyce

    Evolutionary Optimized 3D WiFi Antennas Manufactured via Laser Powder Bed Fusion

  • Popis výsledku anglicky

    The swift and automated design of antennas remains a challenging aspect in research dueto the specific design needs for individual applications. Alterations in resonance frequency or boundaryconditions necessitate time-consuming re-designs. Though the application of evolutionary optimization andgenerative methods in general to antenna design has seen success, it has been mostly restricted to twodimensional structures. In this work, we present an approach for designing three-dimensional antennas usinga genetic algorithm coupled with a region-growing algorithm - to ensure manufacturability - implementedin Matlab manufactured via laser powder bed fusion (LPBF). As a simulation tool for optimization CSTis used. The antenna has been optimized in a completely automated manner and was produced using themetal 3D printing technology LPBF and aluminium based AlSi10Mg powder. The presented concept, whichbuilds upon previous two-dimensional techniques, allows for significant flexibility in design, adapting tochanging boundary conditions, and avoiding the geometric restrictions seen in prior methods. The optimizedantenna has a size of 3.01 cm × 3.43 cm × 1.67 cm and was measured in an anechoic chamber. According tomeasurements a minimum reflection coefficient of −19.95 dB at 2.462 GHz and a bandwidth of 308.8 MHzare observed. CST simulation results predict an efficiency of 98.91 % and the maximum antenna gain ismeasured at 2.45 GHz to be 3.27 dBi. Simulations made with CST and Ansys HFSS and measurements arein excellent agreement with a deviation of the resonance frequency of only 0.13 %, thus further establishinggenetic algorithms as a highly viable option for the design of novel antenna structures.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    "121914 "- 121923

  • Kód UT WoS článku

    001102104300001

  • EID výsledku v databázi Scopus

    2-s2.0-85176743545