Evolutionary Optimized 3D WiFi Antennas Manufactured via Laser Powder Bed Fusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63564678" target="_blank" >RIV/70883521:28140/23:63564678 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10302267" target="_blank" >https://ieeexplore.ieee.org/document/10302267</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3328852" target="_blank" >10.1109/ACCESS.2023.3328852</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolutionary Optimized 3D WiFi Antennas Manufactured via Laser Powder Bed Fusion
Popis výsledku v původním jazyce
The swift and automated design of antennas remains a challenging aspect in research dueto the specific design needs for individual applications. Alterations in resonance frequency or boundaryconditions necessitate time-consuming re-designs. Though the application of evolutionary optimization andgenerative methods in general to antenna design has seen success, it has been mostly restricted to twodimensional structures. In this work, we present an approach for designing three-dimensional antennas usinga genetic algorithm coupled with a region-growing algorithm - to ensure manufacturability - implementedin Matlab manufactured via laser powder bed fusion (LPBF). As a simulation tool for optimization CSTis used. The antenna has been optimized in a completely automated manner and was produced using themetal 3D printing technology LPBF and aluminium based AlSi10Mg powder. The presented concept, whichbuilds upon previous two-dimensional techniques, allows for significant flexibility in design, adapting tochanging boundary conditions, and avoiding the geometric restrictions seen in prior methods. The optimizedantenna has a size of 3.01 cm × 3.43 cm × 1.67 cm and was measured in an anechoic chamber. According tomeasurements a minimum reflection coefficient of −19.95 dB at 2.462 GHz and a bandwidth of 308.8 MHzare observed. CST simulation results predict an efficiency of 98.91 % and the maximum antenna gain ismeasured at 2.45 GHz to be 3.27 dBi. Simulations made with CST and Ansys HFSS and measurements arein excellent agreement with a deviation of the resonance frequency of only 0.13 %, thus further establishinggenetic algorithms as a highly viable option for the design of novel antenna structures.
Název v anglickém jazyce
Evolutionary Optimized 3D WiFi Antennas Manufactured via Laser Powder Bed Fusion
Popis výsledku anglicky
The swift and automated design of antennas remains a challenging aspect in research dueto the specific design needs for individual applications. Alterations in resonance frequency or boundaryconditions necessitate time-consuming re-designs. Though the application of evolutionary optimization andgenerative methods in general to antenna design has seen success, it has been mostly restricted to twodimensional structures. In this work, we present an approach for designing three-dimensional antennas usinga genetic algorithm coupled with a region-growing algorithm - to ensure manufacturability - implementedin Matlab manufactured via laser powder bed fusion (LPBF). As a simulation tool for optimization CSTis used. The antenna has been optimized in a completely automated manner and was produced using themetal 3D printing technology LPBF and aluminium based AlSi10Mg powder. The presented concept, whichbuilds upon previous two-dimensional techniques, allows for significant flexibility in design, adapting tochanging boundary conditions, and avoiding the geometric restrictions seen in prior methods. The optimizedantenna has a size of 3.01 cm × 3.43 cm × 1.67 cm and was measured in an anechoic chamber. According tomeasurements a minimum reflection coefficient of −19.95 dB at 2.462 GHz and a bandwidth of 308.8 MHzare observed. CST simulation results predict an efficiency of 98.91 % and the maximum antenna gain ismeasured at 2.45 GHz to be 3.27 dBi. Simulations made with CST and Ansys HFSS and measurements arein excellent agreement with a deviation of the resonance frequency of only 0.13 %, thus further establishinggenetic algorithms as a highly viable option for the design of novel antenna structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
neuveden
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
"121914 "- 121923
Kód UT WoS článku
001102104300001
EID výsledku v databázi Scopus
2-s2.0-85176743545