Artificial Size Slicing Aided Fine Tuning (ASSAFT) and Hyper Inference (ASSAHI) in tomato detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F24%3A63587578" target="_blank" >RIV/70883521:28140/24:63587578 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0168169924006719?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0168169924006719?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compag.2024.109280" target="_blank" >10.1016/j.compag.2024.109280</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Size Slicing Aided Fine Tuning (ASSAFT) and Hyper Inference (ASSAHI) in tomato detection
Popis výsledku v původním jazyce
In the realm of precision agriculture, accurate harvest prediction is vital, as any discrepancies between forecasted and actual yields can lead to significant commercial and logistical challenges. This paper presents a novel deep learning-based approach for detecting and counting tomato fruits using advanced computer vision techniques. Building upon our previously established framework for ultra-wide image acquisition, this approach focuses on a unique patch-cropping technique tailored to tomatoes. This method aligns with the natural clustering of tomatoes, significantly improving object detection in greenhouse settings and thereby enhancing the model's performance in identifying individual fruits. The detection results exhibit a precision of 0.85, a recall of 0.93, and an F1-score of 0.89. Our approach's efficacy is also demonstrated through a case study on harvest prediction in a tomato greenhouse. The proposed methodology exhibited a lower error rate than the agronomist's estimates and proved its practical applicability. These findings suggest that our methodology could substantially contribute to optimizing sustainable farming practices, offering a promising direction for future research and application in the agricultural sector.
Název v anglickém jazyce
Artificial Size Slicing Aided Fine Tuning (ASSAFT) and Hyper Inference (ASSAHI) in tomato detection
Popis výsledku anglicky
In the realm of precision agriculture, accurate harvest prediction is vital, as any discrepancies between forecasted and actual yields can lead to significant commercial and logistical challenges. This paper presents a novel deep learning-based approach for detecting and counting tomato fruits using advanced computer vision techniques. Building upon our previously established framework for ultra-wide image acquisition, this approach focuses on a unique patch-cropping technique tailored to tomatoes. This method aligns with the natural clustering of tomatoes, significantly improving object detection in greenhouse settings and thereby enhancing the model's performance in identifying individual fruits. The detection results exhibit a precision of 0.85, a recall of 0.93, and an F1-score of 0.89. Our approach's efficacy is also demonstrated through a case study on harvest prediction in a tomato greenhouse. The proposed methodology exhibited a lower error rate than the agronomist's estimates and proved its practical applicability. These findings suggest that our methodology could substantially contribute to optimizing sustainable farming practices, offering a promising direction for future research and application in the agricultural sector.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS AND ELECTRONICS IN AGRICULTURE
ISSN
0168-1699
e-ISSN
1872-7107
Svazek periodika
225
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
001292069400001
EID výsledku v databázi Scopus
2-s2.0-85200482047