Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis of conducted and radiated emission on a self-oscillating capacitive touch sensing circuit

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F24%3A63587738" target="_blank" >RIV/70883521:28140/24:63587738 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10585056" target="_blank" >https://ieeexplore.ieee.org/document/10585056</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/EMCJapan/APEMCOkinaw58965.2024.10585056" target="_blank" >10.23919/EMCJapan/APEMCOkinaw58965.2024.10585056</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis of conducted and radiated emission on a self-oscillating capacitive touch sensing circuit

  • Popis výsledku v původním jazyce

    With the advent of smartphones, there has been a recent increase in the use of capacitive touch sensing for various Human Machine Interfaces (HMI). Capacitive-based touch sensing provides higher flexibility and cost-effectiveness than, methodologies such as resistive-based touch sensing. However, Capacitive-based touch sensing is more prone to disturbances such as Electromagnetic interference (EMI) and noise due to temperature variation. This effect becomes more dominating as the sensing excitation frequency increases. Traditional capacitance to digital circuits, such as sigma-delta capacitive sensing, requires multiple clock cycles to measure sensing capacitance, thus necessitating higher frequency operation. In turn, this produces challenges in Electromagnetic Emission while also increasing its susceptibility to EMI, such as false or ghost touch due to exposure of the sensing electrodes to various frequency electric fields. This paper discusses the conducted electromagnetic emission behavior of an external excitation-frequency independent self-oscillating capacitance-to-time converter, where sensing is done with a single clock cycle, and discusses radiated Electromagnetic emission of the touch sensing electrode. The proposed approach is suitable for touch-sensing applications, mainly when used in a noisy EMI environment, such as inside a vehicle within the Automotive industry.

  • Název v anglickém jazyce

    Analysis of conducted and radiated emission on a self-oscillating capacitive touch sensing circuit

  • Popis výsledku anglicky

    With the advent of smartphones, there has been a recent increase in the use of capacitive touch sensing for various Human Machine Interfaces (HMI). Capacitive-based touch sensing provides higher flexibility and cost-effectiveness than, methodologies such as resistive-based touch sensing. However, Capacitive-based touch sensing is more prone to disturbances such as Electromagnetic interference (EMI) and noise due to temperature variation. This effect becomes more dominating as the sensing excitation frequency increases. Traditional capacitance to digital circuits, such as sigma-delta capacitive sensing, requires multiple clock cycles to measure sensing capacitance, thus necessitating higher frequency operation. In turn, this produces challenges in Electromagnetic Emission while also increasing its susceptibility to EMI, such as false or ghost touch due to exposure of the sensing electrodes to various frequency electric fields. This paper discusses the conducted electromagnetic emission behavior of an external excitation-frequency independent self-oscillating capacitance-to-time converter, where sensing is done with a single clock cycle, and discusses radiated Electromagnetic emission of the touch sensing electrode. The proposed approach is suitable for touch-sensing applications, mainly when used in a noisy EMI environment, such as inside a vehicle within the Automotive industry.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    PROCEEDINGS OF THE 2024 IEEE JOINT INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL &amp; POWER INTEGRITY: EMC JAPAN/ASIAPACIFIC INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, EMC JAPAN/APEMC OKINAWA 2024

  • ISBN

    978-4-88552-347-2

  • ISSN

    2162-7673

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    300-303

  • Název nakladatele

    IEEE

  • Místo vydání

    New York

  • Místo konání akce

    Okinawa

  • Datum konání akce

    20. 5. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001282033600093