Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MEASURING SELF-REGULATED LEARNING AND ONLINE LEARNING EVENTS TO PREDICT STUDENT ACADEMIC PERFORMANCE

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28150%2F18%3A63520250" target="_blank" >RIV/70883521:28150/18:63520250 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.phil.muni.cz/journals/index.php/studia-paedagogica/article/view/1870" target="_blank" >https://www.phil.muni.cz/journals/index.php/studia-paedagogica/article/view/1870</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5817/SP2018-4-5" target="_blank" >10.5817/SP2018-4-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MEASURING SELF-REGULATED LEARNING AND ONLINE LEARNING EVENTS TO PREDICT STUDENT ACADEMIC PERFORMANCE

  • Popis výsledku v původním jazyce

    The aim of this study is to identify whether the combination of self-reported data that measure self-regulated learning (SRL) and computer-assisted data that capture student engagement with an online learning environment could be used to predict student academic achievement. Personally engaged study strategies focused on deep-level learning, the process of taking control, and the evaluation of students’ own learning characterize SRL. Diverse theories on how students benefit from SRL underline its positive impact on student academic outcomes. Similarly, there is no doubt that the future trend in education leans towards the integration of technolog y into teaching in order to exploit its full potential. To benefit from both approaches, a combination of self-reported data and detailed online learning events obtained from an online learning environment were investigated in relation to their ability to predict student academic achievement. A case study of 54 university students enrolled in a blended-learning course showed that of the tested SRL variables and observed learning activities, student interaction with auxiliary materials that were part of the course helped to predict academic outcomes. Despite the relatively low ability of the model to explain why some students were able to become successful learners, the presented results highlight the importance of analysing online learning events in computer-assisted teaching and learning.

  • Název v anglickém jazyce

    MEASURING SELF-REGULATED LEARNING AND ONLINE LEARNING EVENTS TO PREDICT STUDENT ACADEMIC PERFORMANCE

  • Popis výsledku anglicky

    The aim of this study is to identify whether the combination of self-reported data that measure self-regulated learning (SRL) and computer-assisted data that capture student engagement with an online learning environment could be used to predict student academic achievement. Personally engaged study strategies focused on deep-level learning, the process of taking control, and the evaluation of students’ own learning characterize SRL. Diverse theories on how students benefit from SRL underline its positive impact on student academic outcomes. Similarly, there is no doubt that the future trend in education leans towards the integration of technolog y into teaching in order to exploit its full potential. To benefit from both approaches, a combination of self-reported data and detailed online learning events obtained from an online learning environment were investigated in relation to their ability to predict student academic achievement. A case study of 54 university students enrolled in a blended-learning course showed that of the tested SRL variables and observed learning activities, student interaction with auxiliary materials that were part of the course helped to predict academic outcomes. Despite the relatively low ability of the model to explain why some students were able to become successful learners, the presented results highlight the importance of analysing online learning events in computer-assisted teaching and learning.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    50301 - Education, general; including training, pedagogy, didactics [and education systems]

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Studia Paedagogica

  • ISSN

    1803-7437

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    28

  • Strana od-do

    "91–118"

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85061615231