Cation Migration-Induced Crystal Phase Transformation in Copper Ferrite Nanoparticles and Their Magnetic Property
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F16%3A43874343" target="_blank" >RIV/70883521:28610/16:43874343 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26310/16:PU119734
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s10948-015-3339-4" target="_blank" >http://link.springer.com/article/10.1007/s10948-015-3339-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10948-015-3339-4" target="_blank" >10.1007/s10948-015-3339-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cation Migration-Induced Crystal Phase Transformation in Copper Ferrite Nanoparticles and Their Magnetic Property
Popis výsledku v původním jazyce
Impact of crystal phase evolution on structural and magnetic properties of copper ferrite nanoparticles is studied and reported. The copper ferrite nanoparticles were synthesized by starch-assisted sol-gel auto-combustion method and further annealed at 200, 500, 800, and 1100oC. The X-ray diffraction study indicated phase evolution from cubic to tetragonal with increase of annealing temperature. Raman spectroscopy and Fourier transform infrared spectroscopy study revealed the impact of phase transformation and cation redistribution in copper ferrite nanoparticles with increase of annealing temperature. X-ray photoelectron study revealed the cation migration with annealing temperature, which is responsible for structural phase evolution. The field emission-scanning electron microscopy (FE-SEM) study revealed that the ferrite nanoparticles at a lower annealing temperature (200, 500, and 800oC) were agglomerated spherical and elongated particles in the grain size range 10-100 nm. However, at a higher annealing temperature (1100oC), it was hexagonal plate-like particles in the grain size range 50-200 nm. The increase in saturation magnetization (Ms) from 11.60 emu/g (200oC) to 25.48 emu/g (1100oC) with grain growth and crystal phase evolution (i.e., increase of c/a ratio and cation redistribution in CuFe2O4 mixed spinel ferrite) was noticed. In addition, a crystal phase evolution from cubic to tetragonal and a grain growth as a function of annealing temperature both cause also an increase in coercivity (Hc) value from 132.56 Oe (200 oC) to 1442.50 Oe (800 oC) Furthermore, the decrease of coercivity (Hc) value from 1442.50 Oe (800oC) to 218.06 Oe (1100oC) with increase of annealing temperature was due to the "pinning" effect of domain wall at the grain boundary.
Název v anglickém jazyce
Cation Migration-Induced Crystal Phase Transformation in Copper Ferrite Nanoparticles and Their Magnetic Property
Popis výsledku anglicky
Impact of crystal phase evolution on structural and magnetic properties of copper ferrite nanoparticles is studied and reported. The copper ferrite nanoparticles were synthesized by starch-assisted sol-gel auto-combustion method and further annealed at 200, 500, 800, and 1100oC. The X-ray diffraction study indicated phase evolution from cubic to tetragonal with increase of annealing temperature. Raman spectroscopy and Fourier transform infrared spectroscopy study revealed the impact of phase transformation and cation redistribution in copper ferrite nanoparticles with increase of annealing temperature. X-ray photoelectron study revealed the cation migration with annealing temperature, which is responsible for structural phase evolution. The field emission-scanning electron microscopy (FE-SEM) study revealed that the ferrite nanoparticles at a lower annealing temperature (200, 500, and 800oC) were agglomerated spherical and elongated particles in the grain size range 10-100 nm. However, at a higher annealing temperature (1100oC), it was hexagonal plate-like particles in the grain size range 50-200 nm. The increase in saturation magnetization (Ms) from 11.60 emu/g (200oC) to 25.48 emu/g (1100oC) with grain growth and crystal phase evolution (i.e., increase of c/a ratio and cation redistribution in CuFe2O4 mixed spinel ferrite) was noticed. In addition, a crystal phase evolution from cubic to tetragonal and a grain growth as a function of annealing temperature both cause also an increase in coercivity (Hc) value from 132.56 Oe (200 oC) to 1442.50 Oe (800 oC) Furthermore, the decrease of coercivity (Hc) value from 1442.50 Oe (800oC) to 218.06 Oe (1100oC) with increase of annealing temperature was due to the "pinning" effect of domain wall at the grain boundary.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BM - Fyzika pevných látek a magnetismus
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Superconductivity and Novel Magnetism
ISSN
1557-1939
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
759-769
Kód UT WoS článku
000371089500042
EID výsledku v databázi Scopus
2-s2.0-84958743266