Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cation Migration-Induced Crystal Phase Transformation in Copper Ferrite Nanoparticles and Their Magnetic Property

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F16%3A43874343" target="_blank" >RIV/70883521:28610/16:43874343 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26310/16:PU119734

  • Výsledek na webu

    <a href="http://link.springer.com/article/10.1007/s10948-015-3339-4" target="_blank" >http://link.springer.com/article/10.1007/s10948-015-3339-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10948-015-3339-4" target="_blank" >10.1007/s10948-015-3339-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cation Migration-Induced Crystal Phase Transformation in Copper Ferrite Nanoparticles and Their Magnetic Property

  • Popis výsledku v původním jazyce

    Impact of crystal phase evolution on structural and magnetic properties of copper ferrite nanoparticles is studied and reported. The copper ferrite nanoparticles were synthesized by starch-assisted sol-gel auto-combustion method and further annealed at 200, 500, 800, and 1100oC. The X-ray diffraction study indicated phase evolution from cubic to tetragonal with increase of annealing temperature. Raman spectroscopy and Fourier transform infrared spectroscopy study revealed the impact of phase transformation and cation redistribution in copper ferrite nanoparticles with increase of annealing temperature. X-ray photoelectron study revealed the cation migration with annealing temperature, which is responsible for structural phase evolution. The field emission-scanning electron microscopy (FE-SEM) study revealed that the ferrite nanoparticles at a lower annealing temperature (200, 500, and 800oC) were agglomerated spherical and elongated particles in the grain size range 10-100 nm. However, at a higher annealing temperature (1100oC), it was hexagonal plate-like particles in the grain size range 50-200 nm. The increase in saturation magnetization (Ms) from 11.60 emu/g (200oC) to 25.48 emu/g (1100oC) with grain growth and crystal phase evolution (i.e., increase of c/a ratio and cation redistribution in CuFe2O4 mixed spinel ferrite) was noticed. In addition, a crystal phase evolution from cubic to tetragonal and a grain growth as a function of annealing temperature both cause also an increase in coercivity (Hc) value from 132.56 Oe (200 oC) to 1442.50 Oe (800 oC) Furthermore, the decrease of coercivity (Hc) value from 1442.50 Oe (800oC) to 218.06 Oe (1100oC) with increase of annealing temperature was due to the "pinning" effect of domain wall at the grain boundary.

  • Název v anglickém jazyce

    Cation Migration-Induced Crystal Phase Transformation in Copper Ferrite Nanoparticles and Their Magnetic Property

  • Popis výsledku anglicky

    Impact of crystal phase evolution on structural and magnetic properties of copper ferrite nanoparticles is studied and reported. The copper ferrite nanoparticles were synthesized by starch-assisted sol-gel auto-combustion method and further annealed at 200, 500, 800, and 1100oC. The X-ray diffraction study indicated phase evolution from cubic to tetragonal with increase of annealing temperature. Raman spectroscopy and Fourier transform infrared spectroscopy study revealed the impact of phase transformation and cation redistribution in copper ferrite nanoparticles with increase of annealing temperature. X-ray photoelectron study revealed the cation migration with annealing temperature, which is responsible for structural phase evolution. The field emission-scanning electron microscopy (FE-SEM) study revealed that the ferrite nanoparticles at a lower annealing temperature (200, 500, and 800oC) were agglomerated spherical and elongated particles in the grain size range 10-100 nm. However, at a higher annealing temperature (1100oC), it was hexagonal plate-like particles in the grain size range 50-200 nm. The increase in saturation magnetization (Ms) from 11.60 emu/g (200oC) to 25.48 emu/g (1100oC) with grain growth and crystal phase evolution (i.e., increase of c/a ratio and cation redistribution in CuFe2O4 mixed spinel ferrite) was noticed. In addition, a crystal phase evolution from cubic to tetragonal and a grain growth as a function of annealing temperature both cause also an increase in coercivity (Hc) value from 132.56 Oe (200 oC) to 1442.50 Oe (800 oC) Furthermore, the decrease of coercivity (Hc) value from 1442.50 Oe (800oC) to 218.06 Oe (1100oC) with increase of annealing temperature was due to the "pinning" effect of domain wall at the grain boundary.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BM - Fyzika pevných látek a magnetismus

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Superconductivity and Novel Magnetism

  • ISSN

    1557-1939

  • e-ISSN

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    759-769

  • Kód UT WoS článku

    000371089500042

  • EID výsledku v databázi Scopus

    2-s2.0-84958743266