Figure of merit comparison of PP-based electret and PVDF-based piezoelectric polymer energy harvesters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F16%3A43874668" target="_blank" >RIV/70883521:28610/16:43874668 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1117/12.2222283" target="_blank" >http://dx.doi.org/10.1117/12.2222283</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2222283" target="_blank" >10.1117/12.2222283</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Figure of merit comparison of PP-based electret and PVDF-based piezoelectric polymer energy harvesters
Popis výsledku v původním jazyce
The harvesting of mechanical strain and kinetic energy has received great attention over the past two decades in order to power wireless electronic components such as those used in passive and active monitoring applications. Piezoelectric ceramics, such as PZT (lead zirconate titanate), constitute the most commonly used electromechanical interface in vibration energy harvesters. However, there are applications in which piezoelectric ceramics cannot be used due to their low allowable curvature and brittle nature. Soft polymer PVDF (polyvinylidene fluoride) is arguably the most popular non-ceramic soft piezoelectric energy harvester material for such scenarios. Another type of polymer that has received less attention is PP (polypropylene) for electret-based energy harvesting using the thickness mode (33-mode). This work presents figure of merit comparison of PP versus PVDF for off-resonant energy harvesting in thickness mode operation, revealing substantial advantage of PP over PVDF. For thickness-mode energy harvesting scenarios (e.g. dynamic compression) at reasonable ambient vibration frequencies, the figure of merit for the maximum power output is proportional to the square of the effective piezoelectric strain constant divided by the effective permittivity constant. Under optimal conditions and for the same volume, it is shown that PP can generate more than two orders of magnitude larger electrical power as compared to PVDF due to the larger effective piezoelectric strain constant and lower permittivity of the former.
Název v anglickém jazyce
Figure of merit comparison of PP-based electret and PVDF-based piezoelectric polymer energy harvesters
Popis výsledku anglicky
The harvesting of mechanical strain and kinetic energy has received great attention over the past two decades in order to power wireless electronic components such as those used in passive and active monitoring applications. Piezoelectric ceramics, such as PZT (lead zirconate titanate), constitute the most commonly used electromechanical interface in vibration energy harvesters. However, there are applications in which piezoelectric ceramics cannot be used due to their low allowable curvature and brittle nature. Soft polymer PVDF (polyvinylidene fluoride) is arguably the most popular non-ceramic soft piezoelectric energy harvester material for such scenarios. Another type of polymer that has received less attention is PP (polypropylene) for electret-based energy harvesting using the thickness mode (33-mode). This work presents figure of merit comparison of PP versus PVDF for off-resonant energy harvesting in thickness mode operation, revealing substantial advantage of PP over PVDF. For thickness-mode energy harvesting scenarios (e.g. dynamic compression) at reasonable ambient vibration frequencies, the figure of merit for the maximum power output is proportional to the square of the effective piezoelectric strain constant divided by the effective permittivity constant. Under optimal conditions and for the same volume, it is shown that PP can generate more than two orders of magnitude larger electrical power as compared to PVDF due to the larger effective piezoelectric strain constant and lower permittivity of the former.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JB - Senzory, čidla, měření a regulace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of SPIE - The International Society for Optical Engineering
ISBN
978-1-5106-0040-9
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
SPIE - International Society for Optical Engineering
Místo vydání
Bellingham
Místo konání akce
Las Vegas
Datum konání akce
21. 3. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000380592200062