Hybrid nanobiocomposites based on poly(3-hydroxybutyrate) - characterization, thermal and mechanical properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F20%3A63526482" target="_blank" >RIV/70883521:28610/20:63526482 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.actabio.pwr.wroc.pl/Vol22No1/11.pdf" target="_blank" >http://www.actabio.pwr.wroc.pl/Vol22No1/11.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37190/ABB-01473-2019-02" target="_blank" >10.37190/ABB-01473-2019-02</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid nanobiocomposites based on poly(3-hydroxybutyrate) - characterization, thermal and mechanical properties
Popis výsledku v původním jazyce
Poly(3-hydroxybutyrate) is a biopolymer which is used to production of implants in the human body. On the other hand, the physical and mechanical properties of poly(3-hydroxybutyrate) are compared to the properties of isotactic polypropylene what makes poly(3-hydroxybutyrate) possible substitute for polypropylene. Unfortunately, the melting point of poly(3-hydroxybutyrate) is almost equal to its degradation temperature what gives very narrow window of its processing conditions. Therefore, numerous attempts are being made to improve the poly(3-hydroxybutyrate) properties. In the present work, hybrid nanobiocomposites based on poly(3-hydroxybutyrate) as a matrix with the use of organic nanoclay-Cloisite 30B and linear polyurethane as a second filler have been manufactured. The linear polyurethane was based on diphenylmethane 4,4'-diisocyanate and diol with imidazoquinazoline rings. The obtained nanobiocomposites were characterized by X-ray diffraction, scanning and transmission electron microscopies, thermogravimetry, differential scanning calorimetry and their selected mechanical properties were tested. The resulting hybrid nanobiocomposites have intercalated/exfoliated structure. The nanobiocomposites characterize a higher thermal stability and a wider range of processing temperatures compared to the unfilled matrix. The plasticizing influence of nanofillers was also observed. In addition, the mechanical properties of the discussed nanobiocomposites were examined and compared with those ones of the unfilled poly(3-hydroxybutyrate). The new-obtained nanobiocomposites based on poly(3-hydroxybutyrate) containing 1% Cloisite 30B and 5% by mass of the linear of polyurethane characterized the highest improvement of processing conditions. They have the biggest difference between the temperature of degradation and the onset melting temperature, about 100°C.
Název v anglickém jazyce
Hybrid nanobiocomposites based on poly(3-hydroxybutyrate) - characterization, thermal and mechanical properties
Popis výsledku anglicky
Poly(3-hydroxybutyrate) is a biopolymer which is used to production of implants in the human body. On the other hand, the physical and mechanical properties of poly(3-hydroxybutyrate) are compared to the properties of isotactic polypropylene what makes poly(3-hydroxybutyrate) possible substitute for polypropylene. Unfortunately, the melting point of poly(3-hydroxybutyrate) is almost equal to its degradation temperature what gives very narrow window of its processing conditions. Therefore, numerous attempts are being made to improve the poly(3-hydroxybutyrate) properties. In the present work, hybrid nanobiocomposites based on poly(3-hydroxybutyrate) as a matrix with the use of organic nanoclay-Cloisite 30B and linear polyurethane as a second filler have been manufactured. The linear polyurethane was based on diphenylmethane 4,4'-diisocyanate and diol with imidazoquinazoline rings. The obtained nanobiocomposites were characterized by X-ray diffraction, scanning and transmission electron microscopies, thermogravimetry, differential scanning calorimetry and their selected mechanical properties were tested. The resulting hybrid nanobiocomposites have intercalated/exfoliated structure. The nanobiocomposites characterize a higher thermal stability and a wider range of processing temperatures compared to the unfilled matrix. The plasticizing influence of nanofillers was also observed. In addition, the mechanical properties of the discussed nanobiocomposites were examined and compared with those ones of the unfilled poly(3-hydroxybutyrate). The new-obtained nanobiocomposites based on poly(3-hydroxybutyrate) containing 1% Cloisite 30B and 5% by mass of the linear of polyurethane characterized the highest improvement of processing conditions. They have the biggest difference between the temperature of degradation and the onset melting temperature, about 100°C.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20903 - Bioproducts (products that are manufactured using biological material as feedstock) biomaterials, bioplastics, biofuels, bioderived bulk and fine chemicals, bio-derived novel materials
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta of Bioengineering and Biomechanics
ISSN
1509-409X
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
14
Strana od-do
97-110
Kód UT WoS článku
000527787400011
EID výsledku v databázi Scopus
2-s2.0-85082482361