Enhanced Li-ion intercalation kinetics and lattice oxygen stability in single-crystalline Ni-rich Co-poor layered cathodes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F24%3A63578839" target="_blank" >RIV/70883521:28610/24:63578839 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta07156a" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta07156a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d3ta07156a" target="_blank" >10.1039/d3ta07156a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced Li-ion intercalation kinetics and lattice oxygen stability in single-crystalline Ni-rich Co-poor layered cathodes
Popis výsledku v původním jazyce
Single-crystalline nickel-rich cobalt-poor layered oxides are promising cathode materials for lithium-ion batteries due to their high safety and competitive cost. However, the severe cation disorder and lithium/oxygen (Li/O) loss during the high-temperature calcination process result in slow Li-ion diffusion and inferior O stability. Herein, a LiNi0.85Co0.05Mn0.10O2 (NCM85) single-crystalline cathode was prepared at relatively lower lithiation temperatures by barium/aluminum (Ba/Al) co-doping. The increase in the c-axis caused by Ba doping with a larger ion radius and the reduction in Li/Ni disorder can enhance the Li-ion diffusion kinetics, while the strong Ba-O and Al-O bonds considerably boost the lattice O stability to alleviate O escape during the charging process. The optimized cathode exhibits a high reversible capacity of 206.5 mA h g−1 at 0.1C and 115.6 mA h g−1 at 5C. Impressively, 87.5% of initial capacity is still maintained after 500 cycles at 1C in a pouch-type full cell. This finding provides a viable and flexible method to resolve the kinetics and stability issues of other layered oxide cathodes.
Název v anglickém jazyce
Enhanced Li-ion intercalation kinetics and lattice oxygen stability in single-crystalline Ni-rich Co-poor layered cathodes
Popis výsledku anglicky
Single-crystalline nickel-rich cobalt-poor layered oxides are promising cathode materials for lithium-ion batteries due to their high safety and competitive cost. However, the severe cation disorder and lithium/oxygen (Li/O) loss during the high-temperature calcination process result in slow Li-ion diffusion and inferior O stability. Herein, a LiNi0.85Co0.05Mn0.10O2 (NCM85) single-crystalline cathode was prepared at relatively lower lithiation temperatures by barium/aluminum (Ba/Al) co-doping. The increase in the c-axis caused by Ba doping with a larger ion radius and the reduction in Li/Ni disorder can enhance the Li-ion diffusion kinetics, while the strong Ba-O and Al-O bonds considerably boost the lattice O stability to alleviate O escape during the charging process. The optimized cathode exhibits a high reversible capacity of 206.5 mA h g−1 at 0.1C and 115.6 mA h g−1 at 5C. Impressively, 87.5% of initial capacity is still maintained after 500 cycles at 1C in a pouch-type full cell. This finding provides a viable and flexible method to resolve the kinetics and stability issues of other layered oxide cathodes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Chemistry A
ISSN
2050-7488
e-ISSN
2050-7496
Svazek periodika
2024
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
3682-3688
Kód UT WoS článku
001142164300001
EID výsledku v databázi Scopus
2-s2.0-85182897717