Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Electrorheological and magnetorheological properties of liquid composites based on polypyrrole nanotubes/magnetite nanoparticles

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F24%3A63579424" target="_blank" >RIV/70883521:28610/24:63579424 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/70883521:28110/24:63579424

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1361-665X/ad3ca9" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-665X/ad3ca9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-665X/ad3ca9" target="_blank" >10.1088/1361-665X/ad3ca9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Electrorheological and magnetorheological properties of liquid composites based on polypyrrole nanotubes/magnetite nanoparticles

  • Popis výsledku v původním jazyce

    This research presents an in-depth exploration of the electrical and magnetic properties of a polypyrrole nanotubes/magnetite nanoparticles (PPyM) material embedded in a silicone oil matrix. A key finding of our study is the dual nature of the composite, i.e. it exhibits a behaviour akin to both electro- and magnetorheological suspensions. This unique duality is evident in its response to varying electric and magnetic field intensities. Our study focuses on examining the electrical properties of the composite, including its dielectric permittivity and dielectric loss factor. Additionally, we conduct an extensive analysis of its rheological behavior, with a particular emphasis on how its viscosity changes in response to electromagnetic stimuli. This property notably underscores the material’s dual-responsive nature. Employing a custom experimental design, we integrate the composite into a passive electrical circuit element subjected to alternating electric fields. This methodological approach allows us to precisely measure the material’s response in terms of resistance, capacitance, and charge under different field conditions. Our findings reveal substantial changes in the material’s electrical conductivity and rheological characteristics, which are significantly influenced by the intensity of the applied fields. These results enhance the understanding of electro-magnetorheological properties of PPyM-based magnetic composites, and also highlight their potential in applications involving smart materials. The distinct electrical, magnetic and rheological modulation capabilities demonstrated by this composite render it as promising candidate for advanced applications. These include sensory technology, actuation systems, and energy storage solutions.

  • Název v anglickém jazyce

    Electrorheological and magnetorheological properties of liquid composites based on polypyrrole nanotubes/magnetite nanoparticles

  • Popis výsledku anglicky

    This research presents an in-depth exploration of the electrical and magnetic properties of a polypyrrole nanotubes/magnetite nanoparticles (PPyM) material embedded in a silicone oil matrix. A key finding of our study is the dual nature of the composite, i.e. it exhibits a behaviour akin to both electro- and magnetorheological suspensions. This unique duality is evident in its response to varying electric and magnetic field intensities. Our study focuses on examining the electrical properties of the composite, including its dielectric permittivity and dielectric loss factor. Additionally, we conduct an extensive analysis of its rheological behavior, with a particular emphasis on how its viscosity changes in response to electromagnetic stimuli. This property notably underscores the material’s dual-responsive nature. Employing a custom experimental design, we integrate the composite into a passive electrical circuit element subjected to alternating electric fields. This methodological approach allows us to precisely measure the material’s response in terms of resistance, capacitance, and charge under different field conditions. Our findings reveal substantial changes in the material’s electrical conductivity and rheological characteristics, which are significantly influenced by the intensity of the applied fields. These results enhance the understanding of electro-magnetorheological properties of PPyM-based magnetic composites, and also highlight their potential in applications involving smart materials. The distinct electrical, magnetic and rheological modulation capabilities demonstrated by this composite render it as promising candidate for advanced applications. These include sensory technology, actuation systems, and energy storage solutions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA23-07244S" target="_blank" >GA23-07244S: Anizotropní magnetoreologické elastomery s řízenými elektrickými vlastnostmi</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Smart Materials and Structures

  • ISSN

    0964-1726

  • e-ISSN

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    001218728100001

  • EID výsledku v databázi Scopus

    2-s2.0-85193027233