Optimization of the Solution of a Dispersion Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F20%3A00001733" target="_blank" >RIV/75081431:_____/20:00001733 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/8/3/318/htm" target="_blank" >https://www.mdpi.com/2227-7390/8/3/318/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8030318" target="_blank" >10.3390/math8030318</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of the Solution of a Dispersion Model
Popis výsledku v původním jazyce
The study of the combination of chemical kinetics with transport phenomena is the main step for reactor design. It is possible to deviate from the model behaviour, the cause of which may be fluid channelling, fluid recirculation, or creation of stagnant regions in the vessel, by using a dispersion model. In this paper, the known general solution of the dispersion model for closed vessels is given in a new, straightforward form. In order to improve the classical theoretical solution, a hybrid of analytical and numerical methods is used. It is based on the general analytic solution and the least-squares method by fitting the results of a tracer test carried out on the vessel with the values of the analytic solution. Thus, the accuracy of the estimation for the vessel dispersion number is increased. The presented method can be used to similar problems modelled by a partial differential equation and some boundary conditions which are not sufficient to ensure the uniqueness of the solution.
Název v anglickém jazyce
Optimization of the Solution of a Dispersion Model
Popis výsledku anglicky
The study of the combination of chemical kinetics with transport phenomena is the main step for reactor design. It is possible to deviate from the model behaviour, the cause of which may be fluid channelling, fluid recirculation, or creation of stagnant regions in the vessel, by using a dispersion model. In this paper, the known general solution of the dispersion model for closed vessels is given in a new, straightforward form. In order to improve the classical theoretical solution, a hybrid of analytical and numerical methods is used. It is based on the general analytic solution and the least-squares method by fitting the results of a tracer test carried out on the vessel with the values of the analytic solution. Thus, the accuracy of the estimation for the vessel dispersion number is increased. The presented method can be used to similar problems modelled by a partial differential equation and some boundary conditions which are not sufficient to ensure the uniqueness of the solution.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
8
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
RO - Rumunsko
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85082433343