Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

URBAN TRAFFIC DETECTORS DATA MINING FOR DETERMINATION OF VARIATIONS IN TRAFFIC VOLUMES

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F20%3A00002542" target="_blank" >RIV/75081431:_____/20:00002542 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.aaejournal.com/pdf-131596-60856?filename=Urban%20Traffic%20Detectors.pdf" target="_blank" >http://www.aaejournal.com/pdf-131596-60856?filename=Urban%20Traffic%20Detectors.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    URBAN TRAFFIC DETECTORS DATA MINING FOR DETERMINATION OF VARIATIONS IN TRAFFIC VOLUMES

  • Popis výsledku v původním jazyce

    This paper analyses road traffic volumes in the urban environment for the purpose of traffic planning and creation of traffic models. For modelling traffic in a certain area, the initial information about transport demand and distribution in given area is required. The demand for transport is further re-distributed to the transport network and measured against the current road traffic volumes / intensity of traffic. Traffic volumes over time are characterized by various periodic and non-periodic influences (variations). By studying these variations, the tools can be specified for making the final estimate of traffic volumes for a specific time period, a specific type of road or specific vehicle category, and for improving the traffic models for a specific area. In this paper, the authors study time variations in traffic volumes using the data obtained from vehicle detectors for monitoring traffic located on roads in the city of Ceske Budejovice, the Czech Republic.

  • Název v anglickém jazyce

    URBAN TRAFFIC DETECTORS DATA MINING FOR DETERMINATION OF VARIATIONS IN TRAFFIC VOLUMES

  • Popis výsledku anglicky

    This paper analyses road traffic volumes in the urban environment for the purpose of traffic planning and creation of traffic models. For modelling traffic in a certain area, the initial information about transport demand and distribution in given area is required. The demand for transport is further re-distributed to the transport network and measured against the current road traffic volumes / intensity of traffic. Traffic volumes over time are characterized by various periodic and non-periodic influences (variations). By studying these variations, the tools can be specified for making the final estimate of traffic volumes for a specific time period, a specific type of road or specific vehicle category, and for improving the traffic models for a specific area. In this paper, the authors study time variations in traffic volumes using the data obtained from vehicle detectors for monitoring traffic located on roads in the city of Ceske Budejovice, the Czech Republic.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    50703 - Transport planning and social aspects of transport (transport engineering to be 2.1)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    The Archives of Automotive Engineering – Archiwum Motoryzacji

  • ISSN

    2084-476X

  • e-ISSN

  • Svazek periodika

    90

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    17

  • Strana od-do

    15-31

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85151041312