DEVELOPMENT OF PASSENGER CAR SAFETY
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F23%3A00002651" target="_blank" >RIV/75081431:_____/23:00002651 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.magnanimitas.cz/ADALTA/1302/papers/J_kovac.pdf" target="_blank" >https://www.magnanimitas.cz/ADALTA/1302/papers/J_kovac.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DEVELOPMENT OF PASSENGER CAR SAFETY
Popis výsledku v původním jazyce
The goal of the paper was to assess safety of passenger cars sold in the Czech Republic in terms of the development of both active and passive safety features of cars sold between 2020-2022. Using content analysis aimed at collecting secondary data, the sales of passenger cars and their safety ratings were examined. Cluster analysis and neural networks were subsequently used to classify vehicles into self-organizing Kohonen maps, within which the movement between individual clusters was monitored. It was found that more than 25 % of vehicles sold between 2021 and 2022 changed their position compared to the year 2020. When taking into account vehicles newly introduced to the market, the average level of safety of vehicles sold compared to the year 2020. Further research could focus on a more detailed analysis of factors affecting safety on roads and their quantification for making better predictions and prevention of road accidents. It should be considered that vehicle safety ratings are based on a specific methodology and criteria and can vary significantly.
Název v anglickém jazyce
DEVELOPMENT OF PASSENGER CAR SAFETY
Popis výsledku anglicky
The goal of the paper was to assess safety of passenger cars sold in the Czech Republic in terms of the development of both active and passive safety features of cars sold between 2020-2022. Using content analysis aimed at collecting secondary data, the sales of passenger cars and their safety ratings were examined. Cluster analysis and neural networks were subsequently used to classify vehicles into self-organizing Kohonen maps, within which the movement between individual clusters was monitored. It was found that more than 25 % of vehicles sold between 2021 and 2022 changed their position compared to the year 2020. When taking into account vehicles newly introduced to the market, the average level of safety of vehicles sold compared to the year 2020. Further research could focus on a more detailed analysis of factors affecting safety on roads and their quantification for making better predictions and prevention of road accidents. It should be considered that vehicle safety ratings are based on a specific methodology and criteria and can vary significantly.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ad Alta - Journal of Interdisciplinary Research
ISSN
1804-7890
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
361-367
Kód UT WoS článku
001143971400044
EID výsledku v databázi Scopus
—