Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Study of coverage of confidence intervals for the standardized mortality ratio in studies with missing death certificates

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652052%3A_____%2F17%3AN0000044" target="_blank" >RIV/86652052:_____/17:N0000044 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/sim.7432" target="_blank" >http://dx.doi.org/10.1002/sim.7432</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/sim.7432" target="_blank" >10.1002/sim.7432</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Study of coverage of confidence intervals for the standardized mortality ratio in studies with missing death certificates

  • Popis výsledku v původním jazyce

    The paper assesses the coverage probability of commonly used confidence intervals for the standardized mortality ratio (SMR) when death certificates are missing. It also proposes alternative confidence interval approaches with coverage probabilities close to .95. In epidemiology, the SMR is an important measure of risk of disease mortality (or incidence) to compare a specific group to a reference population. The appropriate confidence interval for the SMR is crucial, especially when the SMR is close to 1.0 and the statistical significance of the risk needs to be determined. There are several ways to calculate confidence intervals, depending on a study characteristics (ie, studies with small number of deaths, studies with small counts, aggregate SMRs based on several countries or time periods, and studies with missing death certificates). This paper summarizes the most commonly used confidence intervals and newly applies several existing approaches not previously used for SMR confidence intervals. The coverage probability and length of the different confidence intervals are assessed using a simulation study and different scenarios. The performance of the confidence intervals for the lung cancer SMR and all other cancer SMR is also assessed using the dataset of French and Czech uranium miners. Finally, the most appropriate confidence intervals to use under different study scenarios are recommended.

  • Název v anglickém jazyce

    Study of coverage of confidence intervals for the standardized mortality ratio in studies with missing death certificates

  • Popis výsledku anglicky

    The paper assesses the coverage probability of commonly used confidence intervals for the standardized mortality ratio (SMR) when death certificates are missing. It also proposes alternative confidence interval approaches with coverage probabilities close to .95. In epidemiology, the SMR is an important measure of risk of disease mortality (or incidence) to compare a specific group to a reference population. The appropriate confidence interval for the SMR is crucial, especially when the SMR is close to 1.0 and the statistical significance of the risk needs to be determined. There are several ways to calculate confidence intervals, depending on a study characteristics (ie, studies with small number of deaths, studies with small counts, aggregate SMRs based on several countries or time periods, and studies with missing death certificates). This paper summarizes the most commonly used confidence intervals and newly applies several existing approaches not previously used for SMR confidence intervals. The coverage probability and length of the different confidence intervals are assessed using a simulation study and different scenarios. The performance of the confidence intervals for the lung cancer SMR and all other cancer SMR is also assessed using the dataset of French and Czech uranium miners. Finally, the most appropriate confidence intervals to use under different study scenarios are recommended.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Statistics in Medicine

  • ISSN

    0277-6715

  • e-ISSN

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    27

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    20

  • Strana od-do

    4281-4300

  • Kód UT WoS článku

    000414564800003

  • EID výsledku v databázi Scopus