Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Populus and Salix Grown in a Short-rotation Coppice for Bioenergy: Ecophysiology, Aboveground Productivity, and Stand-level Water Use Efficiency

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F15%3A00474977" target="_blank" >RIV/86652079:_____/15:00474977 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Populus and Salix Grown in a Short-rotation Coppice for Bioenergy: Ecophysiology, Aboveground Productivity, and Stand-level Water Use Efficiency

  • Popis výsledku v původním jazyce

    The genera of Populus and Salix are characterized by high productivity, good coppice potential, and adaptation to a wide range of environmental conditions, making them ideal candidates for bioenergy production using short-rotation coppice (SRC) culture. However, concerns have been raised over the potentially large water use of such SRC systems competing with existing land uses and water demands, especially in settings where water availability may be low. Further, global climate changes may increase drought stress over much of the terrestrial biosphere potentially constraining the area suitable for SRC bioenergy production. Therefore, it is necessary to quantify the water requirement and water use efficiency of these genera to estimate potential future water demands and to design water-efficient bioenergy systems that will be resilient to potential water stress brought about by climate change. To that end, we surveyed the peer-reviewed literature on the ecophysiology, productivity and water use of Populus and Salix focussing on field experiments and on young trees or plantations. Data were compiled from 87 studies on Populus pure species and hybrids, and 60 studies for Salix on net photosynthesis (Anet), stomatal conductance (gs), instantaneous water use efficiency (WUEi), leaf carbon isotope composition (δ13C), aboveground net primary production (ANPP), understory evapotranspiration (UET), canopy transpiration (T), and stand-level water use efficiency (WUEs). ANPP averaged 8.1 to 10.1 Mg ha-1 y-1 for both genera in mostly low input systems (little/no irrigation or fertilization). UET averaged 117 to 240 mm y -1, and canopy T averaged 325 to 439 mm y-1, yielding estimates of WUEs of 18.5 to 26.1 kg mm-1. This is at the high end of the range of WUEs of tree-based SRC systems (6.3 to 43.2 kg mm-1), suggesting that Populus/Salix systems are among the best alternatives where tree-based bioenergy production systems are indicated (e.g. marginal lands, cool climates, etc.) and not likely to provide more competition for water than unmanaged native vegetation or other low input systems.

  • Název v anglickém jazyce

    Populus and Salix Grown in a Short-rotation Coppice for Bioenergy: Ecophysiology, Aboveground Productivity, and Stand-level Water Use Efficiency

  • Popis výsledku anglicky

    The genera of Populus and Salix are characterized by high productivity, good coppice potential, and adaptation to a wide range of environmental conditions, making them ideal candidates for bioenergy production using short-rotation coppice (SRC) culture. However, concerns have been raised over the potentially large water use of such SRC systems competing with existing land uses and water demands, especially in settings where water availability may be low. Further, global climate changes may increase drought stress over much of the terrestrial biosphere potentially constraining the area suitable for SRC bioenergy production. Therefore, it is necessary to quantify the water requirement and water use efficiency of these genera to estimate potential future water demands and to design water-efficient bioenergy systems that will be resilient to potential water stress brought about by climate change. To that end, we surveyed the peer-reviewed literature on the ecophysiology, productivity and water use of Populus and Salix focussing on field experiments and on young trees or plantations. Data were compiled from 87 studies on Populus pure species and hybrids, and 60 studies for Salix on net photosynthesis (Anet), stomatal conductance (gs), instantaneous water use efficiency (WUEi), leaf carbon isotope composition (δ13C), aboveground net primary production (ANPP), understory evapotranspiration (UET), canopy transpiration (T), and stand-level water use efficiency (WUEs). ANPP averaged 8.1 to 10.1 Mg ha-1 y-1 for both genera in mostly low input systems (little/no irrigation or fertilization). UET averaged 117 to 240 mm y -1, and canopy T averaged 325 to 439 mm y-1, yielding estimates of WUEs of 18.5 to 26.1 kg mm-1. This is at the high end of the range of WUEs of tree-based SRC systems (6.3 to 43.2 kg mm-1), suggesting that Populus/Salix systems are among the best alternatives where tree-based bioenergy production systems are indicated (e.g. marginal lands, cool climates, etc.) and not likely to provide more competition for water than unmanaged native vegetation or other low input systems.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Sustainable Biofuels: An Ecological Assessment of the Future Energy

  • ISBN

    978-3-11-027589-6

  • Počet stran výsledku

    40

  • Strana od-do

    155-194

  • Počet stran knihy

    343

  • Název nakladatele

    de Gruyter, Higher Education Press

  • Místo vydání

    Boston

  • Kód UT WoS kapitoly