A model of optimal protein allocation during phototrophic growth
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F18%3A00488938" target="_blank" >RIV/86652079:_____/18:00488938 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.biosystems.2018.02.004" target="_blank" >http://dx.doi.org/10.1016/j.biosystems.2018.02.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.biosystems.2018.02.004" target="_blank" >10.1016/j.biosystems.2018.02.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A model of optimal protein allocation during phototrophic growth
Popis výsledku v původním jazyce
Photoautotrophic growth depends upon an optimal allocation of finite cellular resources to diverse intracellular processes. Commitment of a certain mass fraction of the proteome to a specific cellular function typically reduces the proteome available for other cellular functions. Here, we develop a semi-quantitative kinetic model of cyanobacterial phototrophic growth to describe such trade-offs of cellular protein allocation. The model is based on coarse-grained descriptions of key cellular processes, in particular carbon uptake, metabolism, photosynthesis, and protein translation. The model is parameterized using literature data and experimentally obtained growth curves. Of particular interest are the resulting cyanobacterial growth laws as fundamental characteristics of cellular growth. We show that the model gives rise to similar growth laws as observed for heterotrophic organisms, with several important differences due to the distinction between light energy and carbon uptake. We discuss recent experimental data supporting the model results and show that coarse-grained growth models have implications for our understanding of the limits of phototrophic growth and bridge a gap between molecular physiology and ecology.
Název v anglickém jazyce
A model of optimal protein allocation during phototrophic growth
Popis výsledku anglicky
Photoautotrophic growth depends upon an optimal allocation of finite cellular resources to diverse intracellular processes. Commitment of a certain mass fraction of the proteome to a specific cellular function typically reduces the proteome available for other cellular functions. Here, we develop a semi-quantitative kinetic model of cyanobacterial phototrophic growth to describe such trade-offs of cellular protein allocation. The model is based on coarse-grained descriptions of key cellular processes, in particular carbon uptake, metabolism, photosynthesis, and protein translation. The model is parameterized using literature data and experimentally obtained growth curves. Of particular interest are the resulting cyanobacterial growth laws as fundamental characteristics of cellular growth. We show that the model gives rise to similar growth laws as observed for heterotrophic organisms, with several important differences due to the distinction between light energy and carbon uptake. We discuss recent experimental data supporting the model results and show that coarse-grained growth models have implications for our understanding of the limits of phototrophic growth and bridge a gap between molecular physiology and ecology.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20801 - Environmental biotechnology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biosystems
ISSN
0303-2647
e-ISSN
—
Svazek periodika
166
Číslo periodika v rámci svazku
apr
Stát vydavatele periodika
IE - Irsko
Počet stran výsledku
11
Strana od-do
26-36
Kód UT WoS článku
000430900900003
EID výsledku v databázi Scopus
2-s2.0-85044115214