Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F18%3A00489468" target="_blank" >RIV/86652079:_____/18:00489468 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.rse.2018.04.012" target="_blank" >http://dx.doi.org/10.1016/j.rse.2018.04.012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rse.2018.04.012" target="_blank" >10.1016/j.rse.2018.04.012</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics

  • Popis výsledku v původním jazyce

    The xanthophyll cycle regulates the energy flow to photosynthetic reaction centres of plant leaves. Changes in the de-epoxidation state (DEPS) of xanthophyll cycle pigments can be observed as changes in the leaf absorption of light with wavelengths between 500 to 570 nm. These spectral changes can be a good remote sensing indicator of the photosynthetic efficiency, and are traditionally quantified with a two-band physiologically based optical index, the Photochemical Reflectance Index (PRI). In this paper, we present an extension of the plant leaf radiative transfer model Fluspect (Fluspect-CX) that reproduces the spectral changes in a wide band of green reflectance: a radiative transfer analogy to the PRI. The idea of Fluspect-CX is to use in vivo specific absorption coefficients for two extreme states of carotenoids, representing the two extremes of the xanthophyll de-epoxidation, and to describe the intermediate states as a linear mixture of these two states. The ‘photochemical reflectance parameter’ (C x ) quantifies the relative proportion of the two states. Fluspect-CX simulates leaf chlorophyll fluorescence (ChlF) excitation-emission matrices, as well as reflectance (R) and transmittance (T) spectra as a function of leaf structure, pigment contents and C x . We describe the calibration of the model and test its performance using various experimental datasets. Furthermore, we retrieved C x from optical measurements of various datasets. The retrieved C x correlates well with xanthophyll DEPS (R 2 = 0.57), as well with non-photochemical quenching (NPQ) of fluorescence (R 2 = 0.78). The correlation with NPQ enabled us to incorporate Fluspect-CX in the model SCOPE to scale the processes to the canopy level. Introducing the dynamic green reflectance into a radiative transfer model provides new means to study chlorophyll fluorescence and PRI dynamics on leaf and canopy scales, which is crucial for the remote sensing.

  • Název v anglickém jazyce

    Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics

  • Popis výsledku anglicky

    The xanthophyll cycle regulates the energy flow to photosynthetic reaction centres of plant leaves. Changes in the de-epoxidation state (DEPS) of xanthophyll cycle pigments can be observed as changes in the leaf absorption of light with wavelengths between 500 to 570 nm. These spectral changes can be a good remote sensing indicator of the photosynthetic efficiency, and are traditionally quantified with a two-band physiologically based optical index, the Photochemical Reflectance Index (PRI). In this paper, we present an extension of the plant leaf radiative transfer model Fluspect (Fluspect-CX) that reproduces the spectral changes in a wide band of green reflectance: a radiative transfer analogy to the PRI. The idea of Fluspect-CX is to use in vivo specific absorption coefficients for two extreme states of carotenoids, representing the two extremes of the xanthophyll de-epoxidation, and to describe the intermediate states as a linear mixture of these two states. The ‘photochemical reflectance parameter’ (C x ) quantifies the relative proportion of the two states. Fluspect-CX simulates leaf chlorophyll fluorescence (ChlF) excitation-emission matrices, as well as reflectance (R) and transmittance (T) spectra as a function of leaf structure, pigment contents and C x . We describe the calibration of the model and test its performance using various experimental datasets. Furthermore, we retrieved C x from optical measurements of various datasets. The retrieved C x correlates well with xanthophyll DEPS (R 2 = 0.57), as well with non-photochemical quenching (NPQ) of fluorescence (R 2 = 0.78). The correlation with NPQ enabled us to incorporate Fluspect-CX in the model SCOPE to scale the processes to the canopy level. Introducing the dynamic green reflectance into a radiative transfer model provides new means to study chlorophyll fluorescence and PRI dynamics on leaf and canopy scales, which is crucial for the remote sensing.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Remote Sensing of Environment

  • ISSN

    0034-4257

  • e-ISSN

  • Svazek periodika

    211

  • Číslo periodika v rámci svazku

    Jun

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    345-356

  • Kód UT WoS článku

    000433650700027

  • EID výsledku v databázi Scopus

    2-s2.0-85046036100